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We have developed a hybrid system to predict the secondary structures (!X-helix. fJ-sheet 
and coil) of proteins and achie\'ed 66'4% accuracy, with correlation coefficients of CooH = 
0'429, C. = 0'470 and C, = 0'387. This system contains three subsystems ("experts"): a 
neural network module, a statistical module and a memory.based reasoning module. First, 
the three experts independently learn the mapping between amino acid sequences and 
secondary structures from the known protein structures, then a Combiner learns to 
combine automatically the outputs of the experts to make final predictions. The hybrid 
system was tested with 107 protein structures through k-way cross-validation. Its 
performance was better than each expert and all previously reported methods with greater 
than 0-99 statistical significance. It was obser\'ed that for 20% of the residues, all three 
experts produced the same but wr:ong predictions. This may suggest an upper bound on the 
accuracy of secondary structure predictions based on local information from the currently 
available protein structures, and indicate places where non-local interactions may playa 
dominant role in conformation. For 64% of the residues. at least two experts were the same 
and correct, which shows that the Combiner performed better than majority vote. For 77% 
of the residues, at least one expert was corre.ct, thus there may still be room for 
improvement in this hybrid approach. Rigorous evaluation procedures were used in testing 
the hybrid system, and statistical significance measures were developed in analyzing the 
differences among different methods. When measured in terms of the number of secondary 
structures (rather than the number ofresidues) that were predicted correctly, the prediction 
produced by the hybrid s~'stem was also better than those of indh·idualexperts. 

Keyword.$: protein secondary structure prediction; hybrid system; neural networks; 
memory-based reasoning: statistical methods 

1. Introduction higher order structures (e.g. super secondary struc-
Determining the mapping between amino acid tures (Taylor & Thornton. 1984), domains (Lathrop 

sequences and secondary structures (ex helix, fJ sheet, et ai., 1987)). 
etc.) is an important step towards our under- Many algorithms have been developed for protein 
standing of how protein sequences specify their secondary structure prediction. One of the first 
on'rall "trll('tur('s and funt·tion;;. Currently th(' main effort~ was madE' by Chou & Fa"man (19i4). 
technique to determine protein structures is X-ray Different implementations of their algorithm have 
crystallography, which is a slow and often difficult all attained about a 50 to 60% level of accurac)' in 
process. On the other hand, the database of known predicting the location of !X he.lices. fJ strands and 
protein sequences is growing very rapidly. Thus, it "coil" (i.e. anything other than helix or strand) in a 
is increasingly important to develop computational protein sequence. Garnier, Osguthorpe &, Robson's 
approaches to detennine automatically (predict) the algorithm (Garnier et at., 19i8) is about 58% 
structures of proteins whose sequences are known. accurate for this task. More recently, their impro\'ed 
The correct prediction of secondary structures can algorithm (Gibrat et ai., 198i) is 63% accurate. 
contribute significantly towards this goal. For Qian &, Sejnowski (1988) used an artificial neural 
example, the knowledge of secondary structures can network algorithm to increase 'the prediction accu­
provide a good starting point and reduce the search racy to 64 %. Similar results ha.\"e also been 
space in simulation of protein folding by molecular achieved by other researchers (e.g. Kneller et al., 
dynamics (Levitt, 1983) or lattice models (Skolnick 1990; Holley &: Karplus, 1989). Thus there has been 
&, Kolinski, 1990), or can be used in predicting about a 6% improvement of prediction accuracy in 
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Secondary structure states (h •• helix, t! - sheet, c·· coil) 

hccccceee ...... 

... ...L F 1'---=-.....:::..._-------"----" 

Amino acid sequence 

Figure I. ..\ window i~ moved along an amino acid 
sequence to extraet ("urn'lations between the residues and 
the secondary structure stat(> of the center residue. 

the last 15 to 20 years. which is due to both the 
improyedcomputa"tional methods and the increase 
of the known protein structure data. Almost all 
these algorithms have adopted a "local strategy": 
moving a ··window·· (typically cO\'ering 7 to 19 
residues) along an amino acid sequence and predict 
the secondan' structure state of the center residue 
in the wind~w according to all the residues inside 
the window (see Fig. 1). To assess the accuracy of a 
prediction algorithm for proteins whose structures 
are not-known, it is a common practice to divide the 
known protein structure database into two separate 
sets: the ··training data set" is used to set the 
parameters of the algorithm. and the "test data set" 
is used to test its prediction accuracy. The predic­

, tions produced by the existing algorithms, though 
imperfect, can often show the likelihood or tendency 
of certain peptide chains to form particul;r 
secondary structures. It is also important to know 
the extent to whk·h the protein ~tru<·t ures are deter­
mined b)· "Iocal interactions·': interactions among 
residues adjaeent alon~ the polypeptide chain. 

Though existing predidion al,gorithlll~ are all 
about 60 to &J.~·o ac(~urate for three-state (ex-helix, 
/I-sheet, and coil) prediction, they can make incor­
rect predictions at different places of an amino acid 
sequence. From the point' of \'iew of machine 
le,arning (artificial intelligence), secondar,Y structure 
prediction is an instance of iiuluctive lea.rning, gener­
alizing from known examples to soh'e 'new 
prt)hlem~. llifft'f"f'nt algof"it hlll:-: may work <1("('ording 
to different prineiples and ('an generalize in different 
ways. Therefore, a combination of different algo­
rithms can potentially produce a b~tter prediction 
than indh"idual ones. Based on this analvsis, we 
developed a hybrid s~'stem to predict the se~ondary 
structures, which indeed improved the prediction 
accuracy significantly. Our h)'brid system has three 
different modules ("experts"): a neural network 
module, a statistical module and a memory~based 

reasoning module. and a Combiner. The experts 
were chosen in such a way that they have different 
mathematical' properties. In the training phase, the 
experts independently learn the mapping between 
amino acid sequences and secondary structures from 

the known protein ~tructurt's: the Combiner learns 
to combine automatically the outputs of the 
experts. In the prediction phase. the thrE"{" experts 
make predictjons separatt'ly, then the ('ombiner 
takes the predictions from the thrt"e experts and 
makes final predictions. K-wa~" cross-\'alidation was 
ll:'t'O in E>\'aluating the hyhrid s~·:::.tt'm and stati:.:ti{·al 
:,i~nifit:arl\'t' nwa:,urt>s were used in t:()rnparin~ 

different prediction algorithms. 
Our experiments showed that (I) the hybrid 

system had an o\"erall prediction accuracy of 
66'4 0 '0' which was higher than indi\'idual experts 
and all pre\·iousl~· reported algorilhms at greater 
than 0·99 confidence le\"el: (2) the three experts not 
only had very close o\'erall prediction accuracy, 
their detailed predictions also agreed with one 
another much more than with the real structure (i.e. 
their prediction accu'racy): (3) the accuracy of 
prediction algorithms could change as the test data ,changes. especially when the test data set was small 
(e.g. containing 15 protein sequences): (4) for 20~~ 
of the residues, all three very different experts 
produced the same but wrong prediction, suggesting 
that with the currently a\'ailable protein structure 
data, 80 0 

0 rna)" be the upper bound for the 
secondar,Y structure prediction accurac)" using the 
local strategy; (5) compared to each expert, the 
hybrid system also produced better result in terms 
of the number of secondary structures (rather than 
the number of residues) that were predicted 
correctly. 

2. Method$ and Materials 

(a) The archilerturf and lra;ni'ng oj a hybrid system 

Figure :? shows the o\Te-rall archiu-cture of our hybrid 
~.'"~t(>m. Thf" ~yst(>m rontain~ thi'ff ··t>X})(>rtz;··. a ~tatisti('al 

module. a nwmor~·-baSof>d reasoning modult> and a nf"ural 
network module. and a Combiner. Tht> wholt> s\"stem 
prodlJ('(>~ ~("onda'r~' structurt' pn-diC'tions a:-: f()"nw~:'I!i\'(>n 
a z;t>t of amino at'id St>quelwt>s (i.t>. tt-st data). t>a(·h f"xllt'rt 
mak(>s its predictions indt>lJE>ndt'ntl~'. th(>n th(> ('ombint'r 
takes th(> predictions fropt th(> 3 eXJM>rts and ("Ombint>~ 

them to produce final predictions. At th(> l>t>~innin~. th(> 
hybrid s~'stem leams from the training data ~t about 
mappings between amino acid sequt>nres and st"(·ondar~· 

structures. The training of the whole s~·:;te'm iO\'o'\"es 
(1) training the 3 experts and (2) training the Combiner. 
How (>iH·h pxpert i~ trainf'd and how (>8(·h makp:ot IU,-di(·­
titllll" an- di",·u:-::'t·c1 ill tht' ti)lIo\\'iJl~ ~t·,·till":-. In unl"l" ttl 

train thE' Combiner. half of the training data i~ uS('d to t' 

train the' 3 experts sep3rat~I,y.and the outputs of these 
trained expE'rts on the serondhalf of the training data are 
J'€'corded. These outputs are then used as input~ to train 
the Combiner. The reason for dividing the training data 
set into :? parts is that the behavior of each expert on 
training data can be ,-el")· different from its beha\'ior on 
the proteins whose structures are unknown: their 
performanC'e' on the data that they arenot trained on (the 
second half of the training set) reflects their beha\-iors on 
trul)· unknown protein structures, which is exactJ~· what 
the Combiner should know about and be trained on. The 
training of the experts with half of the training data is 
done purely for the purpose of training the Combiner. 
After the training of the Combiner is completed. each 
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One-hidden layer Statistical 
Neunl NetworkMood 

MelOOl"l-based 
Reasomne 

CEMNAHG ... 

input 

Figure 2. The hybrid s)'stem has 3 experts. a statistical 
module, a memory-based reasoning module and a neural 
network module. The Combiner combines the outputs of 
the 3 experts to produce a final output. 

expert is trained again with the whole training data set. 
These trained experts together with the trained Combiner 
form a trained hybrid system. 

(b) ftlemory-based reasoning 

Memory-based reasoning (MBRt) (Stanfill &. \\Taltz, 
1986) is one expert in our hybrid system-. The essential 
idea of ~IBR is to use known examples directly in problem 
solving. For predicting the protein secondary struC'tures. 
this involves matching each segment (window) of amino 
acid sequences in the test data set against all ihe 
sequences in the training set. finding its "nearest neigh­
bors", and choosing the secondary structure state of the 
majorit,Y of its neighbors as the prediction. Similar 
approa('hes ha\'e been referred to as the "nearest nei~hbor 

method", "exemplar-based reasoning", etc. Le\'in fl al. 
(J986) and Xishikawa &. Ooi (1986) called this approach 
the "homologous method". The key ('omponent in this 
approach is the distance fum·tion or mt.'tri(· used to 
compute the neighbors. The ('hoice of a metric is especi­
ally difficult for elements such as amino acids, because 
th~re is no linear ordering among the elements, which are 
often referred to. as ha\'ing "nominal values". Stanfill &: 
Waltz (1986) proposed se\'era) distance fun<'tions for 
nominal values in their work on memory-based reasoning. 
\Ve improved their functions and applied th~m to protein 
~e("ondaT\' stru('tUfE'S in thi~w()rk. 

BalWd' on the idea of )1 HR. one distalll't' matrix is 
computed for each position of the window using the 
training data set. At window position i, the distance 
matrix Di contains the distance between every pair of 
amino acids at that position. The distance between 2 
segments of amino a~id sequences A = a.a2 ••• a. and 
B = b. b2 ••• b. is defined as: .
 

D(A, B) = L Di(ai, bi),

'-I 
wheren is the window size, Di(ai, bi) is the distance 
between amino acids aj and bi at position i. The smaller 

t Abbreviations used: MBR, memory-based reasoning; 
IP, input pattern; SM, statistical module. 

this distance is. the more similar a j and bi are in term~ of 
forming secondary structures. and the less effect it has on 
secondary structures if one is replaC'E'd by the other. The 
distance matrices Dj can be computed from the training 
data. Assuming there are m secondar~' stru(·ture states B•• 

S2' .•. B. and q different amino acids. x·. x2 
• . .• xf 

(a j bj E {x I .... xf }). Dj(a •. bj) is computed as: 

1 "''' f 
+ -,-.- L L L Ip(sjlaj' x:) 

m n q je I t- "_I 

- p("jlbi . x:)I, (I) 

where x: denotes amino acid XII at window position Ie; 
p(Sjlai) is the conditional probability of secondary struc­
ture state 8 j given that a j has occurred: it represents the 
influence on seconda'}' structure sJ by the singleton amino 
acid at position i. p(sJ~ai' x:) is the conditional probability 
of 8j given both a i and x: have occurred: it represents the 
influence on 8 j by a i together with its neighbor amino 
acids. Thus when p(sJ~aj) ~ p(sJbi ) and p(sJaj, x:) ~ 
p(B~bj~ x:), ai and bi are similar in determining secondary 
structures, and D,(aj, bi) should be small, which is exactly 
what equation (I) yields. 

(c) A statistical metlwd 

A statistical module (SM) is the second expert in our 
hybrid system. It works as follows: for each secondary 
structure state 8), if the conditional probability of B) given 
a window of n residues aa ... a., p(8Jal ••• a.); is known, 
then the 8) that has the highest value for this conditional 
probability ~s chosen as the prediction for a• ... a,,: 

Prediction = {Bj1m:x p(sJ~a.,a2'" ._a.)}. 

B) E {t:r-helix, fJ-sheet, coil}. 

Ac('ording to Bayes Theorem: . 

. I .)_p(8j )·p(a•... a.lsj)
P(SJ1al ... a" - .)' (2) 

. p(a•... a" 

where p(sJ} is the probabilit~· of Sj and p(a • .•. a.lsj) is the 
probability of aa ... a. in secondary structure state 8J; 

peal ... a.) is the probability of a • ... a" in all states. 
Since we only want to find the largest p(sjla l ·." a.), 
pea* ... a.) need not be romputed. Currentl)' there is not 
enough prot.ein structure data a\'ailable for us to rompute 
the frequencies of a• . , . a. in each state 8J in order to 
estimate p(a • ... a"lsj ). They have to be estimated by 
~on}(' ~impler tE·rml'. "'t> t>xtt>nd and apply tht> 
Bahadur·Lazarsfeld expansion (Bahadur. 19(1) here 
(which only deals with binary variables in its original 
form). Assuming that Y., Y2' .. , Y. are random variables 
with nominal values, then 

P(YI'···' Y.) = Hp(Yi) 
i 

x {I + L Zil+ L Z;u+ .. .}, (3) 
i<t i<l<1I 

where Zil is the second order correlation between Yi and 
Yt: 
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and ZiU is the third order t'orn>lation among Yi' Yl and Y.: 

and so on. 
In practict>. for thE' S('('ondary structure prt>diction 

problem, we can only t>"timatt> up to the S('cond ordt>r 
rorrelations with the currently available prott-in structurt> . 
data. The reliability of thest' estimates dept>nds on the 

[ 

sample "izt> used. Thus. wt> postulate the following 
equation: 

p(a, •. '" a~I'~j) ~ n, p(a,loYj )' 

I +C,' L.(.'l·( p(ai 
• allsi) -I)] (4) 

id' p(ailsj)p(a11"j) 

where Io. is proportional to the size of the sample in which 
ratio 

pIal' allsi) 

p(a;!sj)p(a.IsJ) 

is computed, to represent its reliability: 

fiJ<= 

Some obSt>rvations about equation (4): (I) Compared 
with equation (3), correlations among 3 or more re.sidues 
are ignored. This is due to the limited sample size. This 
truncation may have an o\'erall positive or negath'e effect 
on the contribution from higher·order correlations in the 
approximation. thus coefficient C, is introduCt'd to 
('omllt'nsatt> for this. (', ean bt.- t'x)lt'rinwntally detE'r· 
mined. (2) When theft' are no higher-ordE'r ('orrE'lations 
among thE' rE'sidues in a window (i.e. they are all indepE'n. 
dent). p(fl\ ... .• a~I'~j) is ft'dlH"!'d to nil'("il"j)' whkh is 
correct. (3) Information of all ('; possible pairs of residues 
in a window of size n is u~ here. whereas in a commonly 
used statistical method. the COR III method, onl\' n-l 
pairs are used. (4) If the pairwise rorrelatio.n t~r~s are 
small and the approximation Iog(l +z) ~.r is used. we get 
tht> following equation: 

p(a/• ..., a~18J) 

This is t>xa~tl~' the form in Lazarsfeld's original expansion 
(Lazarsfeld. 1961). which ht> derived from a completely 
different path. One ad\'antage of equation (5) is that it 
guarantees that the probability approximation is non­
negative. whk·h equation (4) does not do. Equation (5) is 
the final form of the statistical expt>rt used in this work. 

(d) A rlifici.al nI~l.Iral networ/c 

Artificial neural networks have been used widelv in 
man)' applications ()lcClE'lIand & Rurnelhart. 1986). 
including protein secondary structure prediction (Qian ~ 
Sejnowski, 1988; Kneller et aI., 1990). An artificial neural 

QUi put layer 

Hidden layer 

Input layer 

Figure 3. .\ one-hidden-Iayer feed forward artitieial 
neural nE'twork. The nE'twork computes its output based 
on tht' \'alues of thE' unit,; at the input layer. 

network usually ron"ists of a large number of simplt> 
processing units ronnE'rted by weighted links. Each unit 
('omputes ils output by appl.\·ing an "activation function" 
t() its inputs. The training algorithm used in this work, the 
Back-propagation algorithm (Rumelhart d aI., 1986). 
works on a particular kind of artificial neural network. a 
layered. feed-forward network (see Fig. 3), where the 
processing units are arranged in layers: there is an input 
layer, an output layt>r. and one or more "hidden la)'ers" 
(layers between the input and output layer). A feed­
forward network computes its output in the following 
fashion: first. tht> input layer is set according to an input 
pattern; then ont> layer at a time, from the input t() 
hidden to output layer, the units compute their outputs 
by applying an arti\'ation function to the weighted sum of 
the outputs from tht> units at the lower layer. The weights 
come from the links between the units. The "sigmoid 
function" is often used in feedforwardnetworks as the 
unit's activation function: 

Where 0lj is the output of unit j at layer i: and .x is the 
weightt>d sum of outputs from units at one layt>r below: 

r = L u·;·!I.l0 /_ I.l 
1 

1ri.:L I ill the wei~ht of the link from unit I: at layer i-I til . 
unit j al layt'r i. This rail also be St'ell as a IImj('('lion of 
thE' nt>twork input to a l't'rtain direetioll sl)(>t'itied by the 
weights. Thus. t>a(·h hidden unit reprt>sents a difft'rt'nt 
projeetion from the multiple dinlt'nsional input slla("!' to a 
new space who,*, dimen"ionality is dt>terrriint'd by the 
number of hiddE-n units in the nt>twork. 

TIlt> Back·propagation algorithm "trains" a la~'ered 
network by adjutlting the link weights ofthe net using a 
set of '·trainin/! examples", Earh training t>xample 
('onsist" of an illput I'a" ..m allli illl ideill output I,,'ttl'/"Il 
that the user want,; the netwurk to produl't' for that input. 
The weights are adjusted based on the differenre between 
the ideal output and the actual ()utput of the network. 
This can be seen as a gradit>nt desCent process in the 
weight space. Ail "epoeh training cycle" consists of 
presenting all training examples once to the network. Ilnd 
then adjusting the weights on the basis of the accumu· 
lated errors at tht> output layer. A number ofepoch cycles 
may be required before the output errors are reduced t() 
an accepted le\·t>1. After tht> training is completed. the 
network can be applied to inputs that are not in the set of 
training exarnplt>s_ For a new input pattern IP. the. 
trained network tends to produce an output similar t() the 
training examplt> whose input is similar to IP. This can be 
used for interpolation. approximation, or generalization 
from examples dept>nding on the goal of the user. 



1053 Protein Serondary Strurture Predirtion 

Table I 
Protein strurturea IUed in this u:Qrk 

Prot~in Cod~ Subunit LPngtb ~o. H ~o.E 

(\·tol'hrom~ r;;'';O 1.';.';(' 134 3.'i .; 
(';·"...hroltlt> Bt>4i;! i E. rmi. o"ielizl'<i) !.';tiB 1III tl'i CI 

!·Ar>thinost-.hindinl! I'rnll'in IABI' 3(16 I(H; 2C1 
Artinoxanl hin IACX 107 0 47 
Phospholipa~ A2 IBP'.! 123 54 8 
C~'lochrom~ ('5 (o"idizt'd) 1('('5 83 39 0 
Cl"tochrom~ (' I('C'R III U 0 
C~I('ium.binding pan'albumin 8 ICPV 108 52 6 
Crambin ICRX 46 20 4 
Subtilisin carlsbt'rg (inhibitor) J(-:';E 63 II :!2 
17/112 Ribosomal prot~in (C·l.t'rminal domain I IC1'F 68 3a 18 
Cl"tochromt' c3 ICY3 118 16 0 
Ht'moglobin (e~·thrO('TUorin. dt'Ox)') IECD 136 97 0 
Elongation fa('tor tu (domain il IETl' 196 78 36 
Immunoj!lobin FAR I FlU (H LI 445 11 ;.'08 
FC fragment (lOG I class) IFCI (A) 206 15 95 
Immunoglobin fc and fragment B of protein a 

complex IFc-l (CI 43 21 0 
Ferrodoxin IFDX M 5 4 
Flal"odoxin IFXI 147 43 32 
Ferredoxin IFXB 81 10 0 
Glucagon (pH 6-pH 7 forml IGC~ 29 14 0 
"I Crystallin IGCR 174 .5 77 
GI~'Cl'raldeh~'de;3'phospha'e d~h)"drogenase IGDI (01 336 73 95 
Glutathione peroxidase IGPI (A) 184 43 29 
Oxidized high potential iron protein (HIPIP) IHIP 85 10 9 
Hemer~,thrin ()IETI IHMQ (A) 113 73 0 
Insulin lI~S (A D) 51 22 3 
Leghemoglobin (Aretat~. MET) ILHI 153 107 0 
L)'sozyme ILZI ·130 39 10 
M~'oglobin (DEOXY. pH 8'4) IMBD· 153 113 0 
Immunoglobulin FAB fragment (MC/PC6OJ) IMCP (H L) 442 Ii 211. 
~relittin IMLT (A) 26 ~l 0 
Xt'uroto"in B I~XB 62 () 26 
PseudoBZurin IPAZ 120 17 44 
Plastoc)'anin IPCY 99 4 35 
Hl"droxl"bt'nzoate hl"drox\"lase IPHH 39-& li9 96 
C~lcilim·.fret' phospholipa~ A2 IPP'l (L) 133 48 8 
A\'ian panc~lItic pol.\'peptide IPPT 36 18 0 
Rh"daDt'lW IRHD :?!l3 81 32 
Ribonurlease A IR~3 124 22 48 
Ribonurlease TI iwzl"me IR"'T 104 17 28 
~uhtiiisin BPX . I~HT :?i5 83 49 
Tr~'psin (:-;<;T) I:-;<;T 2441 21 " ~rpion neurotoxin (\"a~iant 3) ISX3 65 8 12 
Tr~'psinogen complex with porcine panc~atic 

6t'CT't'tor\" ITGS (1 ) 57 9 II 
Triose ph~phate isomerase ITIM (A) 248 106 42 
Tonin ITOX 238 10 71 
l'biquitin Il'BQ 76 12 24 
«·8ungarotoxin 2ABX (A) 74 0 4 
Actinidin (sulfbyd~·1 proteinase) 2ACT 218 56 40 
.-\riel prott'inll>'t", ,...nic·iIIn"..""in 2APP :42:4 311 U7 
A..i.I "r()'t-ina~.. (rhiz"i'lIsi'''i'~in) :!.\I'R :12.-, :!4; 141> 
Azurin (oxidizoo) 2AZA (8) 129 13 41 
t)'tochrome B5 (oxidized) 2B5C 85 21 21 
Carbonic anh~'drase form B (carbonate 

deh)'dratasie) 2CAB 256 17 79 
C)1ochrome c' 2CCY (A) . 127 90 0 
C),tochrome c3 2CDV .·lOi 27 10 
Ch)'motrypsinogen A 2CGA (A) 245 18 79 
Ch)'motrypsin inhibitor 2 (CI-2) 2C12 65 11 14 
Concana\'alin A 2C'NA 237 .. 103 
C)'tochrome P45OC..Uf (camphor monoox)'genase) 2CPP 405 ISO 41 
Citrate synthaS(' 2CTS 437 25i 6 
C)·tOehrome c peroxidase 2CYP 293 134 16 
Cd'ne 5 D~A binding protein 2GN5 87 0 4 
H~mogl<ibin (dl'ox)·) 2HHB (A B) 287 197 0 
Hemoglobin V ICYA~O,METI 2LHB 149 100 ·0 
L)'soz)'me 
Cytoplasmic malate dehydrogenase 

2LZM 
2MDH (A B) 

164 
649 

109 
213 

14 
110 
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Table I (continued) 

Protein Code Subunit Len~th Xo. H Xo. E 

CD. ZX 1Iletallothionein(isoform III 2:t1T"l til 0 0 
O"omue'oid third domain 20VO 56 10 9 
Prealhnmin (human plasma) 21'AB (:\I 114 M ;;9 

I'rut ..ina"" K ~I'RK :!;9 iii; I;lt 

!o;taphylewoe'e,al nud..ast' e'omplE'x :!S;.;S 141 :!Ii :!ll 
Cl·.Z~ Superoxide dismutase llSOD (B) 1;;1 0 5-1 
Slrtplom!lC'tll subtilisin inhibitor llSSI lOi 17 26 
Satellite tobacco llE'crosis virus 2~"V 11).1 18 82 
Tomato bushy st,unt virus 2TB\' (C) 321 4 112 
CytochromE' eSSI (oxidized) 35IC 82 38 0 
Adenylate kinase 3ADK 194 106 25 
Bact~riochioroph'yil 3BCL 356 57 170 
Cytochrome ell (reduced) 3C2C II:! 44 0 
.Native elastase 3EST 251 13 82 
Ferredoxin 3FXC 98 7 15 
Catabolite gene a('ti"ator protE'in-('ydi(' AMP 

complex 3GAP (.-\) 208 64 21 
. Glutathione reductase, oxidizE'd form (E) 3GRS 461 132 III 

CaJdum·binding protein 31CB ;5 43 0 
Phosphogl,)'cerate kinase complex with ATP 3PGK 415 143 46 
Phosphoglycerate mutase DE·phospho enz,)'me 3PGM 230 69 15 
Rat mast cell protease II 3RP"1 (A) 23i 12 83 
Rubredoxin 3RXN 52 0 8 
Wheat germ agglutinin (isolectin 2) .3WGA (B) IiI 16 16 
TRP aporepressor 3WRP 101 77 0 
APO.liver alcohol dehydrogenase 4ADH 374 79 77 
Aspartate carbamo')'ltransrerase 4ATC (A B) 463 133 65 
Carboxypeptidase Ail (COX) complex 4CPA (I) 37 0 6 
Dihydrofolate reductase complex 4DFR (8) 159 29 56 
Ferredoxin 4FDI 106 18 14 
F1avoooxin (semiquinone form) 4FXN 138 47 29 
Lactate dehydrogenase APO enzyme )(4 4LDH 333 111 37 
TIJ'psin inhibitor 4PTI 58 .8 14 
fJ Trypsin. diisopropylphospholJ'l inhibited 4PTP 234 16 72 
Southern bean mosaic virus coat protein 4SBV (C) :?:!:? 32 -.).-
Thermolysin complex 4TLN 316 IIi 5-1 
Troponin C 4TIlC 160 101 6 
C'aroox,Ypeptidase Ail (COX) SCPA ' 30i III 50 
Catalase ·7CAT (A) 498 137 71 
Papain C'\'8·25 oxidized 9PAP :?I:? 49 36 

Totar 113 1!I.S61 53:!4 4098 

If tht'rE' is mort' than 1 subunit in a prutE'in. c'olumn Subunit indi<'atE's ",hic'h subunit(s) was used. 
1....lll!th illdie'att'~ tIlt' llumhE'r IIf rl'~idu,'s in tlw pf()t ..in ""4u..n.·..s u""d. XII_ H indie·at..,. tht' num ....r IIf 
residue.. in iI·ht'lix: Xo. E indi('ates thE' numl...r of residu.... in p-sheet. Tht'rt' II.... lOi I'f()tt>ins in this 
TablE'. with 113 subunits. 19.861 residues. 

(e) Datalxue 

A dat.abase of 107 proteins was selt't'ted from 
Brookhavt·n Prott'in Data Rank. It "ontain,; 1!l.H()1 

wht'rt' .\' j,; tIlt' total numlwr of I'\·,;iclu.." in tilt' t .."t elatare:;idu~. 113 llubunits. All &'quen{'t'll ($ubunitll) art' lellS 
sets, q. is the numbt'r of residues of secondar.y strueturethan 50% homologous with one another. The DSSP 
type 8 that are predicted correctly, 8E {iX·helix, fJ-sheet. program (Kabsch &. Sander. 1983a) was used to assign t.he 
coil}. To measure the "quality" of the prediction on eachseconda!')' structure state of each residue. The DSSP 
type of se<'ondary structure. Matthews' correlation coeffi­program assigned 7 states, B, E, G, H. S. T and "the rest"
 
cient was also used, For secondary structure type 8,
to the residues in our database. For the purpose of this 

work. H was considered tX helix. E waseonsidered fJ sheet. 
and the rest were considered coil, Table I lists names of all c = (p.n.)-(u.-o.) 
the proteins in our dat.abase. • J(R.+ u.)· (n.+o.)· (P.+u.)· (P. +0.)' 

where P. is the number of .positive cases that were(f) Prediction accuracy measurement" 
correctly predicted; ". is the number of negative cases 

In this work. we adopted the commonly used definition that were correctl.r rejected; 0; is the number of over· 
of prediction accuracy. which is t.he percentage of predicted cases. andu. is the number of underpredicted 
cOrrectly predicted residues for the 3 types of secondary cases. These coefficients thus measure the differences of 
struct.ures: predictions for different t)'lleS of structures. 
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Table 2 
Sumber of re..~idue.<;. helix and sheet contents and names of protein $equenu.'J in each test group 

~o. Helix Sheet Proteins and their maximum Average of 
(;roup rt'sidue (00) (%) homology with other proteins (00) maximum (~o) 

:!417 :!!H; 21':? 1F(':!·( '(:l9·,,»). 2~IT:?(a2·H). 1FX B(3·...iL ~B.)n3:!·91. 3(':!('(43·7). 3-l.:! 
:?S~S(31'2)_ :!LH B(:?9·;»). 0113))(29'41. 1ETl·;:?4·HI. 2:\(T(4;')·(I). 
1~lf'P-H(4:!·8). Ilo;BT(36·O). 2~tDH·B(3;·.>I. 3BCL(I!H) 

2 246.') 28·1 19-6 IGC~(44·8). IPPT(38·9). 4PTI(34·5). Il'BQ(3S-:!). 3WRP(31·7). 31'5 
I56B(3O·9). 2PA8-A(31·6). ICY3(30-5). 4fX~(31·2). 2~T\"(26·6). 

3RP"!-A(31-2). ITOX(37·4). 2CAB(24·2)_4LDH(:?I-o). 2CTS(19'2) 
3 2550 27'5 22'7 llX8-D(olO-O). 2('12-1(36'9). IS~3(32-3). IP('\"(31·3). 32'7 

IH)IQ-A(29·2). 2AZA.B(30-2). 2HH8-8(41-11. 1LH1(3O·1). 
3GAP-A(24·5). IFB4-H(4H;). 4PTPHI·9J. :?<:YP(:?1·8). 
2APR(39-1),3GR8(18-4) 

4 2450 25-1 20-7 IMLT-A(46-2), 20VO(33·9).35IQ35·4). 3FXC(34)-6). ICCR(34'2), 31'5 
IPAZ(32·5). I ECD(28·7). 2LZ~f(26·2). 3WG.-\-B(:?4-6). 
UfCP-L(42·3). 2CGA·A(40-0). IABP(2:?·5). :?T8\·..('(2:!·i). 
IPHH(:?H) 

5 2492 26-0 20-1 ICRX(3i-o). IXX8(3i·I). ICTF(39·7). lR~"(29·8). 2('D\"(29·9). 30-1 
IRX3(27·4). IPP2-L(38·3). 4ATC-8(30-I). IGPI·A(:?5·5). 
4SBV-C(2i'O), 3EST(35·5). 5CPA(21·8). 4TL~(21·8). 3PGK(20-5) 

6 2476 23·7 20-4 3RX~(38·5). IFDX(37·O). 3IC8(36-o). 2G~5(32·2). ICPV(35·2). 31·8 
1121(26-9). 2HH8-A(42·6), 2800-8(28-5). 1FCI·.-\(25-2). 
9PAP(46-2). 18GT(32-1), -lATC-A(22·3). IGDI·O(22·3). 4ADH(20'3) 

7 2507 27·2 2H) 4CPA-I(35·). ICSE·[(34·9). ICC5(33·7). 4FD1(3H). 2881(32'7). 30-4 
18P2(41·5). I FXI(27·9). 4DFR·B(2i-o). 3ADK(28·9). 3PG~t(26·1). 

2CXA(24·9). IRHD(23'5), 2APP(39-3). 2CPP(l9-5) 
8 2504 27'4 19'4 1Dl8-A(47·6). ITGS·I(35·I), 2ABX·A(36-5). IHIP(32-9), 33'4 

IACX(3-6),2CCV-A(34·6). 155C(36·6). 4TXC(28-1). IGCR(24·7). 
IFB4-L(43·1). ITIM-A(24-2). 2PRK(35-5). 2)IDH·A(37·7). 
7CAT-A(11'1) 

The number of residues, helix an~ sheet contents. and the names of the protein sequencn (subunits) in each test group. (I FC2-e. 
subunit C of IFC2.) The number in the parenthesis after each protein name is the maximum homology between that sequence and all 
St"quences in other groups (i.e. the training data set for that test group). The last column is the average of the maximum homology of. 
each group. 

(g) A measure of statistical 8ignijicanc~ 

When comparing different prediction algorithms. we 
need t.oknow whether the differences in prediction accu­
racy among them are statisti('all~- signifh·ant. Stati~ti('s 

theory gi\"es us a mE-thod to comput.e the "significance 
inter\"ar' for the differem-e between 2 population propor­
tiOIl$ (Daniel. )987). 1n tht> ('ast' of :'\t>('ondary strUl-ture 
prediction. the "proportion" is the percentage of residues 
in a set of t.est data whose secondary structure state has 
been eorrectl,y predict.ed. Assume th~ prediction ac(~uracy . 
of 2 algorithms are P. and Pl for 2 test data sets of r. and 
r2 residut'S. respecti\·ely. and the test data ue randomly 
S€'lected. then we say that we are a x 100% confident that 
the accuracies of the 2 algorithms arerea1ly different if 

11'1 -p21 > I. 

PI(1-PI) + P2(1-P2). 1= %(1 +a/2)' (6) 
r. r2 

% is the inverse cumulative normal distribution. For 
example, when a = 0-95, %(1 +a/2) == 1'96; if r. = r2 = 
20.000. the significance inten'alis I ~ 0-9%: if r. = 1'2 = 
4000, I ~ 2'1 %. If we choose a = 0·99. 1'. = r2 = 20.000, 
t.hen I ~ )'2%. Thus. the bigger the difference between 2 
prediction accuracies. the more significant it is. For the 
same difference, the more test data used. the more signifi­
cant it. is (and the more confident we are). Equation (6) is 
used in t his paper to determine whether the difference in 
the aeeuracies of 2 different predictions is statistically 
significant_ 

3. Experiments and Results 

(a) K -UYl.y cross-validation 

To evaluate the hybrid system, all the proteins in 
our database werE' randomly divided into eight 
groups. In each test. one group of proteins was used 
as the test data st"t and the rest as the training data 
set. The whole experiment consisted of eight such 
tests, Le. eight independent runs of the h)rbrid 
system, each time on a different test data set. This 
way, there was no o\'erlap between training data 
and test data, and' e\-ery protein was used as test 
data once. This is the so-called Uk-way cross-valida­
tion" testing pro<-edure. Table 2 lists the proteins 
and the numhf.>r of r(>~irlll(>~ in ('arh p:rOl1p. the ~ 

heJix and P::;het't ('ontents in the group. as well as 
the degree of: homology between proteins in 
different groups. 

(b) JrindoU' size and other choices 

Throughout this ,work, a win~ow size of 13 
residues was used. Each expert looked at 13 residues 
at a time and predicted the Secondary structure 
state of the center residue in the window. The 
Combiner looked at the predictions of 13 residues 
from each expert and made a final prediction for the 
center residue. For each amino acid sequence in the 
test data set, the window was moved over the whole 
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!iequem·e. and a prediction was made for en'r)' 
residue. 

There were other choices that had to be made 
before starting our k-way cross-"alidation experi. 
ment with the hybrid system. They included (I) the 
number of hidden units and the number of trainin~ 
(·.'"(·Il's for m'ural networks: (:!l til{' thrt>"hold for 
"nt'arest Iwighbors" in ~IBR module: and (3) the 
eoefficient C, in the S~1. If these choices were made 
aecording to the system's performance on the test 
data set. then they might be fine-tuned to fit the 
particular data set and make the system's accuracy 
appear higher than it really is. To avoid this, prior 
to the k-way validation experiment, a "pilot seC of 
20 proteins was randomly chosen from the database, 
and the above choices were made based on the 
system's performance on this pilot set. (The pilot set 
consisted of: IIXS·A, 3RXX, 2~IT2. ICTF, 351C, 
2COV, IH~JQ-A, IRX3. IPP2-L. 4FXX. 2S00-B, 
BIBO, IGPI-A, IFB4-L, 4PTP, ITOX, 2PRK, 
4ATC-A, 4LDH, IPHH.) . 

(c) M BR and 8M: traini7U] and prediction 

. In Memory-Based Reasoning module. first the 
distance matrices were computed using the training 
data set. There was one distance matrix for each 
position of the window, see equation (I) for details. 
Then for each segment (window) of the amino acid 
sequences in the test data set, b1, b2 , ••• b., the top 
25 instances in the training data set that had the 
shortest distance to it were considered its neighbors. 
The strength of prediction (score) for each 
secondary structure state was the percentage of 
neighbors in that state weighted by the inverse of 
their distances. The structure state that had the 
highest score was taken as the prediction by MBR. 

1n the statistical module, the frequencies of 
singletons and pairs of amino acids within a window 
aI' ..., a" were calculated for each structure statesj 
in the training data set, to approximate the condi­
tional probabilities p(a;!.5j)s and p(a j • atl.sj)s. Then for 
each segment of amino acid sequences in the test 
dataset, bl , 62", . b., these probabilit)' \'alues were 
used to estimate the probability p(sjlb1 • b2 , ••• b,,) 
according to equation (5) (e, = 1'5 was used in this 
work), where Sj is one of the secondary states 
(el-helix, f1-strand and coil). The value of 
p('~jlhl' b2• ••• b,,) was taken as the score of predic· 
tion for strudural state,sj' and the .state that had 
the highest score was taken as the prediction by 8:\1. 

(d) Traini7U] neural networks 

One important issue in training neural networks 
by the Back-propagation algorithm is deciding 
when to stop training. If a network is trained 
through too many cycles, the network tends to 
memorize the training examples but generalizes 
poorly on the inputs that it has not been trained on 
(i.e. test data). One practice is to monitor the 
performance of the network being trained on the 
test data. and to stop training when the perform~ 

ance peaks, This strategy cannot be used in real 

situations where the tru{' answer is truh' unknown. 
We used the following techniques to' soh'e this 
problem: (I) limit in!! the number of training cycles: 
(2) limiting the number of hidden units_ thus the 
number of free "ariahles (the "memory capacity") 
in the neh\'ork: (3) whton a\·ailable. usinl! a &>parate 
control data set to 1'''1111'01 whf:'11 to "to!, trainil1j.! tht' 
network, that is. to monitor tht' ~rf()rlllanl'e of the 
network being trained on the control data set and 
stop training when the performance peaks. 

,.\. one-hidden-Ia"er neural network was used as 
one of the three e·xperts. This network is referred 
to as EXPERT-XX in the following discussion. 
,.\. total of 21 input units was used to encode one 
residue. one unit for each of the 20 amino acid types 
plus one end marker. With a window size of 13 
residues, there were 21 x 13 = 273 input units total. 
EXPERT-XX had three output units. one for each 
of the three secondary structure states (el-helix, 
f1~sheet and coil). The n'etwork had only two hidden 
units. EXPERT-XX was trained up to 200 epoch 
cycles on the training data set. and the network 
weights that galo'e the best performance on the 
traini7U] set during training were sayed as the final 
result of training. The acti,'ation of the output units 
were used as the score of prediction for the 
corresponding secondary structure, 

The Combiner of our hybrid system was also a 
one-hidden-Iayer neural network. The Combiner 
took the outputs of the three experts as inputs and 
made final predictions based on these outputs. For 
every residue, ea('h expert generated three numbers 
representing the prediction score for :x-helix. f1-sheet 
and coil, respectinly. The Combiner took the 
predictions of 13 residues from each of the three 
experts as its input. thus it had 13 x 3 x 3 = 117 
input units. It also had three output units. one for 
each of the secondar\' "tru(·ture states. As diseu"sed 
in ~Iethods and )I~terials. in order to train the 
Combiner. the training; dataset wal'\ di"ided into 
two hah·es. whieh will Lt' r<·fE'rrt'C1 to a" {H I} and 
{H2} in the following dis('ussion. The three experts 
were first trained on the first half of the data set 
{HI}' Then they were applied on the set'ond half 
{H2}, Their outputs on {H 2L {Output(H2)}' were 
then used as input patterns for training the 
Combiner. Similarl~', the three experts were also 
trained on {H2} and their outputs on {Htl. 
{Olltpllt(Htl}. wpr't' n'l'Ord"cl. Finall~'. tIlt' ('omhiner 
was trained up to too t'pol·h l'ydt>s, using .'{Output(H2H as training data and {Output(Hd} 
as control data, The weights that gave the 
best performance on both {Output(Hd} and 
{Output(H2H during training were sa"ed as the 
result of training the Combiner. A total of 30 hidden 
units was used in the Combiner. Since there was a 
control data set here, the number of hidden units 
was less crucial here than in EXPERT-XX. 

(e) The hybrid system improt'ed prediction accuracy 

Table 3 shows the results for the eight test data 
sets in our k-wa.y cross·validation experiment. Table 
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Table 3 
Predict£on accuracy on te.st data ·.,et,s 

(;roup 
Xo. 

SE'quence 
Xo. 

residue 
EXPERT·XX 

(°0 1 
fo'}1 
(°0) 

}IBR 
(°0) 

Hybrid 
(0-0) 

:! 
:l 
4 
;') 

6 
; 
8 

14 
1;-, 
14 
14 
14 
14 
14 
14 

:?41; 
:.!41i.'i 
:?.'i;,)(1 
2450 
2492 
24;6 
250; 
2504 

. tiCl-'; 
ti:l-s 
6"·" 
6:?'3 
6.1-2 
6.')-2 
62·3 
6-1·9 

6:?'''' 
6:J·:J 
63'6 
62-9 
6:2-4 
64-1 
63·8 
6.5'5 

6-.... 
ti:l-9 
6-1.; 
64-0 
64'4 
6.')-8 
63·1 
65'5 

6'')'3 
fitj'3 
66'2 
66-2 
66·6 
68'1 
65'1 
6;'5 

Total 113 19.861 63·1 63'5 6-1-5 66'4 

ThE' predi(·tion ae('ura(')" on each test data set by tht> 3 eoxperts and by the hybrid s~·stem. ~o. 

SE'quem'E' i!' the number of SE'quenees (suhunits) in l"aeh group: Xo. residuf.- is tht> number of residues in 
ea(-h group. 

4 shows the accuracy for each sequence. Overall, for Table 4 
the prediction of secondary structures ex-helix, The arcuracy 01l each protein sequence (subunit) by 
fJ-sheet and coil, EXPERT-NN was 63'10/0 the three experts and the hybrid system 
accurate, )IBR was 64'5% and 8)1 was 63'5%. The 
hybrid system was 66'40/0 accurate. The total :';)1 )IBR EXPERT·~~ Hybrid 

Protein (00) (C!o) (%) (%)number of residues used in the experiment was 
19,861. According to the statistical significance 155C 6-&'9 74'6 64·9 7()-9 
measures described in equation (6), the improve­ 1568 62'; 61-8 70-0 64'5 
ment of the hybrid system over each expert was I.-\BP 59-8 53·3 57-8 57'5 
statistically significant (with higher than 0'99 confi­ IACX 'i()-I 63'6 60-7 61'7 

IBP"l 52-0 55·3 52-0 52'8dence level). Thus we are highly confident that oUr 
1('('5 ;5-9 72·3 69-9 77-1hybrid system really improved the prediction I("'('R 6';'6 ;0-3 70-3 i3-0 

ac(·uracy. WP\­ 63'9 5.'),6 60-2 66-7 
The Matthews' correlation coefficients for each ICRX ro-o 56'5 50-0 52-2 

expert and for the hybrid system are shown in Table ICOSE-J 6.')'1 68'3 63-5 71'4 
IC7F 55-9 5;'4 50-0 54'45. All three experts had similar coefficients and 
Ie\"3 68'6 7()-3 75'4 74'6

produced better prediction on !X helix and coil than IE('D 4-1·9 43'4 36·8 45'6 
on fJ strand. One reason for this rnight he that a lETt· 6,,-9 ';1'4 70·9 ;7-0 
single fJ strand can hardly be stable; more than one	 IFB4-H 71-6 i5'5 65·9 ;1'2 

IFB4-L 66·2 70-8 61-1 68'1strand gt>t stabilized when they interact with one 
JI-TI·.\ ~)-s l)ll-::! 60':? 58'3another to form a -fJ sheet; this interaction is often IF(":!-(' ;.1'4 i6'; 60-5 79-1 

not local along the sequenc.'e and thus cannot be IFDX 7:?·:? 79-6 70-4 72'2 
captured very well by the local aJjproach. Thus, no IFXI 52'4 ;')7-8 57'1 57-8 

matter what algorithm is used, fJ strand would still IFXB 82'7 75·3 70'4 77'8 
IGCX 5.~-2 41'4 48·3 ·48'3be the most difficult state to predict, The hybrid 
IGCR 45-4 52·9 56·9 52~9

system improved the prediction for all t.he structure 1(;01-0 57-I 6(H 64-3 63'1 
states.	 IGPI·.-\ 6-&-7 60-3 65'8 65-2 

IHIP 6-&-7 67·1 60-0 60-0 
lH~IQ-.-\ li!'-!' :lfHi i)IN fl:J·; 

(f) .-t .singh: .small te.,;t data .sd ;.-; dallyc'ruW5 II~~-A -r;·.j :hl 47'ij 4:?'9 
IIX~-D 76'7 . 73-3 76'7 83·3 

From Table3 we computed thea\'erage difference ILHI 70·6 61-4 68-0 72'5 
in prediction accuracy	 among the t.hree different lUI 73-8 66-9 70-0 68'5 

DIBD ~i';-3 67·3 60-1 68-0~xperts for the same sets of test data, which was 
I}ICP-H 6-1'4 75-7 61'3 81'5

o-9~o- This shows that the o\?erall accuracies of the DltP·L 6.j-() 70-0 61-4 69-1
three experts were very close. \Ve also computed the DILT-.-\ 42-3 ro-o 50-0 46'2 
average difference for the same expert on the eight IXXB 67-7 61-3 66-1 62-9 

different test data sets, which was 1-3%. Thus, if IP.\Z 59-2 65·8 63'3 66'7 
IPCY 58·6 6-&·6 65'7 67';each test data set is observed independently, the 
IPHH 60-4 58'1 66·0 64'2difference in prediction accuracy caused by the IPP'!·L 65-4 70-7 66·9 69-2 

different test data sets were at least as large as the IPPT 77-8 83-3 75-0 88-9 
difference brought about by the different experts_	 IRHD 6-&-2 66'2 64'8 66-2 

IRX3 54·8 62·9 58·1 66'9This observation argues strongly against using a 
IR~"T 6-&-4 61'5 68'3 67·3single small test data set: (1) "statistical noise" can 
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Table 4 (continued) 

)IHR EXPERT-XX Hybrid 
Protein (°0) (°0) (~,;,) 

lSBT 
IS(;T 
ISX3 
ITGS·I 
ITDI·.-\ 
ITOX 
Il:HQ 
2AHX-A 
2ACT 
2APP 
2APR 
2AZA-H 
2Bi)(' 
2~.\J3 
2CCY-A 
<!CD\" 
2CGA·A 
2C12·1 
2C~A 

2CPP 
2(,T8 
2CYP 
00:\5 
2HHB·A 
2HHB-B 
2LHB 
2LZM 
2MDH·A 
211WH·8 
2MT2 
20VO 
2PAB-A 
ZPRK 
2S:\S 
2S0D·H 
28S1 
2.')TV 
2TB\"-C 
3SI(' 
3ADK 
3BCL 
3\2C 
:IEST 
3FXC 
3GAP·A 
3GRS 
31eH 
3PGK 
3PG)1 
3RP2·A 
3RXX 
3WGA·8. 
:l\\·P.I' 
HuH 
4ATC-A 
4ATC-B 
4CPA-1 
4DFR·8 
4FDI 
4FXX 
4LDH 
4PTI 
..PTP 
48BV-C 
4TLX 
4TNC 
5CPA 
7CAT-A 
9PAP 

Total 

63'3 6!1-.J 
tili-, '.'i-.J 
7:Pl 76-9 
63-2 57-9 
i0-6 66'1 
70-2 i8·2 
61·8 55·3 
89-2 78'4 
68·3 i2'O 
61-9 57'9 
69-2 68·9 
45·7 51'2 
6,"j'9 67'1 
64-1 69'5 
75-6 63'8 
72-9 i3-8 
64'9 iN 
60-0 i0-8 
57-8 58'6 
69-6 61'5 
68·0 62'5 
63'8 63'5 
69·0 6,:;'5 
72'3 70-2 
61'0 59-6 
68'5 65·8 
60-4 64-6 
55-2 57-4 
48'0 53·2 
95·1 91-8 
62'5 64'3 
50-0 50-9 
63·8 69-9 
61-0 60-3 
66-2 67'5 
74-8 69-2 
51-1 53'8 
59-5 62-0 
81-i 76'8 
6H 68'0 
.J9-i 40-7 
7H 82·1 
,(~l i"i 
7N 75'5 
50-5 60-1 
58-8 55-7 
85'3 89-3 
66-0 66-Q 
63-9 67'8 
54-9 66'7 
82-7 84-6 
80-1 77'2 
7;;,2 7(~3 

5,':! ;).l-3 
58'4 61'3 
62'1 61-4 
78'4 67-6 
59·1 58'5 
67·9 73-6 
68'1 63·8 
59·8 58·3 
70-7 60-3 
71-4 82'5 
53'2 54-1 
57-9 62'3 
83·7 78·1 
60-9 63-8 
65-7 64'5 
70-3 80-7 

63'5 64'5 

66-;; 
li.'i-(I 

7fNi 
66-7 
69-0 
69-7 
65·8 
8l-l 
67·0 
55'7 
66'8 
48'1 
63'5 
71'1 
79'5 
71-0 
58'4 
64-6 
60-3 
61'5 
64·1 
60-1 
62'1 
66·0 
47'9 
60-4 
61'6 
56'8 
47'1 
95'1 
60-7 
59-6 
63-8 
61·7 
72'2 
72-0 
51·1 
60-1 
79-3 
61·9 
50-0 
59-8 
6.J-9 
65'3 
&t'8 
62'7 
86'7 
67-5 
67'4 
55'3 
84'6 
80-7 
66'3 
59·.J 
61-0 
64·1 
73-0 
59-7 
75-5 
64-5 
59-2 
70-7 
68-8 
57-2 
58'2 
77-5 
63'8 
65'5 
70-3 

63'1 

67-3 
,S-3 
72-3 
56'1 
73·8 
75·6 
63-2 
81-1 
73'4 
59-" 
68'3 
..8·1 
1)5'3 

69-5 
83'5 
76'6 
72·2 
70-8 
59-1 
65·9 
69-1 
64'8 
70-1 
78-0 
61-6 
67-1 
61-6 
61·7 
52-0 
9&7 
66'1 
58·8 
71·3 
63'8 
71'5 
78-5 
53'8 
64'5 
86-6 
69'6 
44'7 
68'7 
79-3 
7i'6 
5&7 
63·3 
90-7 
67'7 
68·3 
62'0 
84'6 
80-7 
i3·3 
57·5 
63'5 
62'7 
70-3 
62·9 
72-6 
68·8 
61·3 
62·1 
77'8 
55-9 
65'8 
79-4 
66'4 
64·9 
76'4 

66'4 

Table S
 
The J/aUhelcs' correlation coefficients for each expert
 

and the hybrid system on each structural state
 

1IIethod c, 

S1l1 U-:I!lu "-.JIll n.;l.ifl 

1I1llP. u-:l!lti "·.J16 o·:!.;, 
EXPERT-XX 0-39.:; 0-383 0-333 
H)'brid 0-.J29 o-·tiO 0-38i 

Table 6 
The percentage of total re.~idues for Ii-,hich tu'O experts 

produced the .same secondary structure prediction 

EXPERT·~X 1IIBR Hybrid 

EXPERT-~X 84'3% 82-9°0 

1I18R 77'7~o 82-0°0 

8M 83'6°" 

Table 7 
Percentage accuracy 

One correct .Two correct Three correct Three incorrect 

76-6% 64-0%50-6% 19-4% 

make the Same algorithm have different accuracies 
on different test data sets if the sets are small; 
(2) the difference among different. algorithms. even 
if it truly exists, can be easily "buried" by such 
statistical noise. Thus. large or multiple test data 
setS should be used whenever possible. 

(g) Different a{gorithm.~ made sim£lar pTediction.~ 

The three experts used in our experiments did not 
only ha\'e similar oH'raJl prediction aC'('uraeies. but 
also made similar predictions for each sequence. 
Table 6 shows the percentage of the residues in the 
test data sets for which. different experts produced 
the same predictions. On a\'erage, each pair of 
experts agreed with each other on about 80 % of the 
total 19,861 residues. All three experts produced the 
same prediction on about iO% of the total residues 
(not shown in the Table). Table 7 shows the per<·ent· 
agt> of r('sidu('" fur whi(·h at It>ast oIl(> t>:,(pt'rl was 
correct, at least two experts were correct, all three 
experts were correct and all three experts gave the 
same but wrong predictions. For about 20% of the 
residues. all three experts produced the same but 
wrong predictions. This, together with the informa­
tion from Table 6 indicates that the "local rules" 
(the rules mapping short segments of amino acid 
sequences to secondary structures) obtilined by the 
three very different experts were actually quite 
similar, but they did not apply quite as well to the 
test data. This may suggest an upper bound on the 
secondary structure prediction accuracy based on 
local information from the currently a\'ailable data. 
In places where all algorithms were the same but 
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Table 8 
.-l ccuracy oj prediction.s 

% Ht'lix fl Sht'("( 

)I~th"d (""rred O\"er l'nder ('oef. Correct O\'er l'ndt>r ('O('f. 

~)I 

)IBH 
EX PERT· XX 
Hyhrid 

:14,; 
:Ilr.t 
314 
3.')3 

1!l:i 
»;:! 
181 
162 

1;1 
:!oi 
to:! 
163 

'~39:! 

U-:HI 
&3.'H 
0-445 

449 
4tH 
421 
450 

:!!I!l 
:!SI 
316 
:!3-l 

3;.; 
4:!11 
40:1 
3;4 

'~:!K.1 

t~:!44 

l)-;!311 

0-33.5 

The number or ("Orrect predictions ({'OrTt>t't). undt>rpredictions (l"nder). o\·t>rpredictions (O\"t>r) for % 

helix and fl sht"t"t b~' t>ach t>.~Jll'rt and tht> hybrid sj·stt>m. Coer. is tht> :llatthews' correlation coefficient 
(~ )It>thod" and :\Iatt>rials.l. 

incorrect, the structures might be determined by 
non·local interactions. Among the residues where all 
three experts did agree with one another. they were 
correct for 71 % of the residues. Thus. if we only 
consider the cases .....here all three experts agreed, we 
ha\'e a much higher predietion aecuracy. 

(h) HQTnoUxjy between training and test data set 

It is kno.....n that if the training data and the test 
data are identical or highly homologous, then the 
prediction accuracy could be misleadingly high. 
However, when the degree of homology between 
training and test data was below 50%. we did not 
find strong positive correlations between the predic­
tion accuracy and the degree of homology. For 
example, the degree of homology betweeri IGCN, 
BILT-A and IfXS-A and their training data were 
44'8%, 46'2% and 47'6~,o respectively, and their 
prediction accuracies .....ere quite low (see Table 4); 
whereas 2CTS, 3GRS and iCAT-A had very low 
homology with their training data (19'2%, 18'4% 
and 17'1 %. respecti\'t'ly). but t heir prediction 
accuracies were much higher. 

(i) Secondary structure$ as illdiridual ullit.~ 

Often it is more important tQ predic~ correctly the 
occurrence or absence of a secondary structure (oc 
helix or pstrand) as a whole rathe;r than just to 
predict the states of indi\·.idual residues. Thus the 
following criteria were also used in this work to 
evaluate the predictions of different methods:· we 
took an 7 helix or p ,.;1 rami a!': an inoi\'ieiual unit. .. and ('hN:ked· how lIlany of 1ht-tie tit'(:onuary st ruc:­
tures were co~tly predicted (positive cases), how 
many of them we.re.. not predicted at all (under­
predicted), how. many were predicted which do not 
exist in the real structures (o\:erpredicted). Then a 
Matthews' correlation coefficient is calculated for 

. each method, We found that the hybrid system had 
the most positive cases and the fewest O\'erpredic­
tions and underpredictions. (Xote that this is in 
terms of number of secondary structures, not 
residues.) .. 

Specifically, in this work an oc helix is said to have 
been predicted if at least four continuous residues in 
a sequence are predicted to be in H state; a pstrand 

is said to have been predicted if at least two con­
tinuous residues were predicted to be in E state. "If 
the overlapping region between a real secondary 
structure and a predicted secondary structure of 
the same type is greater than half of the length 
of the real structure or the predicted structure, 
then the real secondary structure is considered to 
have been correctly predicted. If more than one 
predicted secondary structure overlaps with one 
real secondary structure, only one of the predicted 
secondary structures is considered as a correct 
prediction, and the rest are counted as oYerpredic­
tions. If one predicted secondary structure overlaps 
with more than one real secondary structure, only 
one of the real secondary structures is considered as 
correctly predicted, and the rest are counted as 
underpredictions. Table 8 lists the correct predic­
tions, o\·erpredictions. underpredictions and 
:\Iatthews' coefficient for ex helix and p strand by 
each expert and the hybrid system according tQ 

these criteria. (In calculating Matthews' coeffi­
cients, the residues between 2 helices (sheets) are 
('onsidered to form 1 non-helix (non-sheet).) The 
hyhrid system produced the best result by this 
criteria as well. 

::\0 doubt the aho\'e criteria are not perfect. And 
the details such as the numbers 2 for p strand and 4 
for ex helix are to some extent arbitrary. However, 
we need some crit~ria to capture the intuitive notion 
of "how many secondary structures a.re predicted 
correctly", We belie\-e the above criteria serves as 
an unbiased, first-order approximation to that. It 
provides a new perspeeth'e tQ evaluate different 
prediction methods. For t'xample, R:\f ishetter than 
)IBR and EXPERT-XX b\· this critt-ria. wlwl"t-a;; 
that is not the case if w~ count the number of 
correctly predicted residue states (~ Table 4). 

(j) An example 

Figure 4 shows the prediction for protein IPAZ 
by each expert and the hybrid system. It illustrates 
the points discussed in previous sections. Xote that 
the inputs from each expert to the Combiner in our 
hybrid system are the three prediction scores for 
each of the three states (oc helix, p sheet and coil), 
not just the predicted states themselves; and the 
Combiner looks at the prediction scores of 13 posi­
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o 10 20 30 40 so 60 

Protein: EIIEVHKLiKGAEGAKVFEPAYIKAIPGDTVTFIPVDKGHIVESIKDKIPEGAEXFXSKIIEIYVLTVTQ
 

Structure:-eeeeeeeeee--eeeeee--eeee----eeeeee-------ee-------------------eeee--­

SK: ----ehhhh-----hhhh-hh-ee------eeeee-----------hh-h--hhhhhhhh----eeee-­

KBR: ---eehhh-h-----ee------------eee---------------h--h--hhhhh-h--------- ­

Expert-I.:---hhhhh------hehh------------eee---------------------hhh------eeeee-­

Hybrid: ----eee--------ee-------------eeee--------------------hhhhhh-----eee-­

70 80 90 100 110 

Protein: PGAYLVKCTPHYAKGKIALIAVGDSPAILDQIVSAKKPKIVQERLEXVll 

Structure:-eeeeee---------eeeeee------hhhhhh----hhhhbbbbbbb-

SK: ----eee-----hhhhhhhee-------hhhhhh----hhhhhhhh---­

MBR: ----ee----------eeeee-------hhhhh-----hh-hhhhhhh-­

Expert-••:---eee------hhhhheeee---------hhh-------hhhhhhhh-­

Hybrid: ----ee------hhheeeeee--------hhhh-----hhhhhhhhhh-­

Figure 4. The secondary structure prediction generated by S)f. }IBR, EXPERT-XX and the hybrid system. 
~tru<·turt> indic-att'S the st'('Ondary structure assignment by the DSSP program. 

tions at a time. That is why we can see that in and achie\-ed 64 0 3°0 a('(Ouraey on a t~:;t set of 15 
certain cases the Combin;r can override the proteins (containing 3520 residues). Their system 
majority of the three experts, such as between contained two networks: the first network took 
residue 0 and 10 of I PAZ. In some places, all three amino acid sequences as inputs and produced the 
experts made the same but wrong predictions. For initial prediction; the second network "cleaned up" 
example, there is a short p strand between residue this initial prediction to produce final predictions. 
40 and 50 that none of the experts predicted; and This system could also be seen as a hybrid system 
they all predicted a helix between residue 50 and 60 but with only one expert. We applied their method 
that dO<',; not £'xi;;t in the r£'al strueture.Jn both to our £'ight t~"t data :«'1". Tahlt' 9 show,. tht' rt'sults. '; 

cases the Combiner made the same mistake also. This was done not only to compare the final results, 
Xone of the experts could always make better but also t() see whether adding two more experts 
predictions than others. For example, 8M is the only could really helpo The overall prediction accuracy of 
one that predicted the sheet between residue 20 and the cascaded system on our test data sets was 
30. ~IBR is the only one that did not give the false 6-H)%, which, on a much larger scale (19,861 versus 
prediction of a helix between residue 80 and 90, and 3520 residues), confirmed Qian & Sejnowski's 
EXPERT-XX made fewest mistakes between results. However, the improvement of the cascaded 
residue 50 and 70_ network over a single network was only 0-5%, not 

1'5% as reported in their paper_ According to our 
statistical significance measure (equation (6)), both

(k) Comparison with other methods 0-5% for 19,86] residues and 1'5% for 3520 residues 
Qian& Sejnowski (1988) used a "cascaded neural were not statistically significant differences at confi­

network" system in secondary structure prediction dence leve] 0·95. We also noticed that there was 
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Table 9 
The aauracy on th~ eight te.1t data .sets by Ca.scaded 

network.s of Qian &- Sejnou'ski (1988) 

Group 
~o, 

'*'quenC't' 
Xo, 

residuf' 
Rin~le network 

(°0) 
Cascaded network 

, (O,~) 

2 
3 .. 
5 
6 
7 
8 

I~ 

1.5 
1-1 

I" 
I" 
I" 
I" 
1-1 

:!417 
:!~4i5 

:!55Q 
2..50 
2..92 
U76 
2507 
25O-l 

Iil'lI 
1>4·3 
62·5 
62·7 
63·3 
65'5 
62·6 
6.5'3 

Ii:!';') 
6-1-3 
63·2 
62,9 
6-1-3 
66'6 
62·9 
65,;) 

Total 113 19,861 63'5 64-Q 

some difference in prediction accuracy (0'4%) 
between their single network and our 
EXPERT~NN,even though they were both trained 
and tested on the same data sets. The reason was 
that according to Qian & Sejnowski's method, the 
performance of their network on the test data set 
was monitored during training. The network 
weights that performed the best on the test set were 
saved and used. Whereas in our work, the 
EXPERT-NN never saw the test data set during 
training (see Methods and Materials). 

The GOR III algorithm by Gibrat et al. (1987) 
was reported to have achieved 63% prediction 
accuracy by using correlations between certain pairs 
of amino acids and secondary structures. Biou et al. 
(1988) further improved the GOR III algorithm by 
combining its result with that of two other algo­
rithms. the Homologue method and the bit pattern 
method, achieving a reported accuracy of 65'5% 
(we refer to this combined algorithm as 
GOR-Combined in thE' following dis('ussion). We ran 
the GOR-Combined program on protein sequences 
in our database. Since their program contained the 
statistics calculated using tht'ir data bast', i.e. their 
training data, we dh'ided our database into two 
groups. Group A contained sequences that were 
identical or more than 50% homologous to their 
training data. Group B contained the rest of the 
sequences. There were 64 sequences in group A and 
49 sequences in group B. Apparently group B 
should be used as the test data to compare the 
COR-Combinf'd al!ain;:t other algorithms. h{'('aulie a 
prediction algorithm could easily have a very high 
prediction accuracy on protein sequences that are 
eIther identical or highly homologous to its training 
data, which cannot be used as an objective assess­
ment of the alg~rithm's prediction accuracy. For 
group B, the GOR-Combined was 62'4 % accurate. 
This is 3% lower than their reported result. One 
reason for this might be that GOR-combined algo­
rithm used certain rules to combine the outputs of 
different methods, and those rules did not work 
quite as well for proteins not in its database. We 
used the 64 protein sequences in group A to train 
our hybrid system and applied it to the 49 protein 
sequences in group B. It was 65'3% accurate. This 

Table to 
Accuracies of differellt algorithms for three .state.s 

(helix ..sheet. coil) prediction 

~If'thod 

;')\}Lilli (l1I7", 
('hou &: F<\~ll1an (I!17~) .';(/ 

U>"in ..I ai, (I!ll:lti) 6·)·') 

GOR III 63 
Qisn .t Sejnow.ki (19881 64-3 
Holley &: Karplus (1989) 63'2 
Hybrid 66'4 

is about I % lower than the average accuracy of the 
hybrid system in the k-way cross-\'alidation experi­
ment. We believe this was due to the smaller 
training set used here. which had only 64 protein 
sequences. 

Table 10 lists the results of several other algo· 
rithms. The results were obtained from each 
author's original report except those by Lim (l974) 
and Chou & Fasman (1974), because in their original 
reports they used the same dataset for both 
training and testing. Kabsch & Sander (l983b) 
assessed the accuracies of these two algorithms with 
separate test data, and the results were included in 
the Table instead. Among these. our hybrid system 
was tested with the largest set of protein data and it 
gave the highest prediction accur,acy. 

4. Discussion 

The idea of combining the strength of different 
methods is not entirely new in either machine 
learning research (Wolpert, ]990) or protein 
secondary structure prediction. For example, Biou 
et al. (1988) used certain rules to combint' three 
methods. However, the authors did not explain how 
their rules were generated in the first place. Thus it 
i:; difficult for us to justify the use of thoSt' rules. In 
our hybrid system, the Combiner learns how to 
combine the outputs of different experts automati­
cally from the training data. A novel procedure has 
to be developed to train the Combiner because 
different experts can have very different behaviors. 
For example, after training, some experts can be 
100%' correct on the training data set while others 
may be only iOo~ (·orrE'{·t on the training elata. e\'en 
though they have \'ery similar prediction accuracies 
for proteins not in the training set. Our training 
procedure for the Combiner can cope with experts 
that have such different characteristics. 

This work showed that although different algo­
rithms may have very similar overall secondary 
structure prediction accuracies, their detailed 
predictions can be different. No single algorithm 
alwaysgh'es a better prediction than others. 
A combination of them can produce a statistically 
significant improvement over each individual 
method. We developed a way to train a Combiner, 
which learned to combine the outputs of different 
experts automatically. A neural network was used 
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as the Combiner in this work. But it is not the only 
choice. A :\IBR system, for example. can also be 
used as a Combiner. This paper is the first place 
where the 8:\1 algorithm and the particular )1BR 
distance function ha\'e been introduced. Their accu­
racy were a:> ~ood as or en'n hetter than any other 
single algorithm reported to date for seeondary 
structure prediction. They deserve a more detailed 
discussion. which is beyond the scope of this paper 
and is done elsewhere (X. Zhang, unpublished 
results). The techniques we used to control the 
training of artificial neural networks were not only 
objecth-e but also effective. For a single one-hidden­
layer network, the accuracy was 63'1 % with our 
techniques (to control training purely based on the 
training data). Whereas the other approach, to 
monitor the performance of the network on the test 
data during training, was 63'5%. The difference 
between them. was only 0'4 %. Thus our techniques 
produced near-optimal training. 

One of the reviewers of this paper raised the issue 
of whether residues assigned to state G by the DSSP 
program (Kabsch & Sander, 1983a) should be con­
sidered as in helix, especially when they are 
adjacent to s~ate It. In our original experiments, we 
wanted to make our result directly comparable with 
results obta.ined by other researchers, such as Qian 
& Sejnowski (1988), since the main point of this 
paper is t~at for the same secondary structure 
assignment, the hybrid system gives better predic­
tion than other algorithms. Thus we used the same 
assignment as Qian & Sejnowski (]988), i.e. only 
considering H for a helix and E for Pstrand. After 
we received the reviewer's comments, we did the 
following experiment: we assigned G states to be 
helix if they are adjacent to H, oth~rwise assigning 
them to be coil. This way, among the ]9,861 
residues in our database, ]62 residues (0-8% of the 
total residues) were assigned differently. i.e. to helix 
instead of coil. Tllen we compared the original 
prediction of our hybrid system with this new 
assignment. It is 66-] % accurate. This is very close 
to the original accuracy of 66'4 %. The change in 
accuraCy (0-3%) is much smaller than the change in 
the assignment (0'8%). This means that even 
though the hybrid system was trained with a 
different assignment, it can still predict correctlJr 
most of the new assignment. This il" in aceordan{'e 
with observations by other researchers (e.g. 

. Richardson & Richardson, 1988) that there are 
certain ambiguities on secondary structure 
boundaries assigned by DSSP. 

Good criteria for evaluating and comparing 
different prediction algorithms are crucial for the 
progress of this research field. In this work, we made 
use of the significance interval measure from statis­
tics, which could tell us whether the differences 
observed are significant or not, 'and what factors can 
influence that. We emphasize the importance of the 
fact that in our tests, the hybrid system never 
looked at the test data during training, thus making 
the performance of the system on the test data as 
objective as possible. The k-way cross-validation 

allowed us to test our hvbrid S\'stem with as manv 
data as .....e have. and y;t still ~voided o\-erlapping 
bet.....een the test data and training data. Some 
researchers have used one protein in each test 
group, thus maximizing the trainin/! data size. 
Howen:'r. thE' extremt'ly lar~e amount of compu­
tation in our .....ork pre\'ented us from doing that (i.e. 
k = ]13. the total number of protein sequences of 
our database). We choose Ie = 8. which did not 
reduce the size of each training data set \'ery much, 
and yet cut the amount of computation dramati­
cally. Even so, a large amount of computation was 
still needed to carry out our experiment. This 
involved (I) computing many statistics for SM and 
dIstance matrices for MBR; (2) pattern matching 
and sorting through the whole database to find 
neighbors in )IBR; and (3) training many neural 
networks .....ith large numbers of input/output 
examples. The experiment was done on a massively 
parallel computer Connection Machine CM-2. The 
particular machine we used had 4096 processors. In 
general, CM-2 can have up to 65,536 processors. 

There are many important issues in protein 
secondary structure prediction, such as: (I) is "the 
percentage of correctly predicted residues" the best 
measure for successt (2) What is the best way to 
assign the secondary structures to a protein once 
its three-dimensional co-ordinates are knownt 
(3) What is the right criteria for homology in 
selecting test/training datat A comprehensive 
discussion of these issues is beyond the scope of this 
paper. The emphasis here is to demonstrate that our 
hybrid system gives significantly better perform­
ance than individual algorithms' and an previous 
methods. using the same criteria in selecting data 
and the same accuracy measure as used by other 
researchers. 

We are grateful to EriC' Lander and Tau-:\Ju Yi for 
valuable <-omments and >'uggestions on sen-ral drafts of 
this paper. We thank Christian Sander for providing us 
with the DSSP program and Anand \'. Bodapati for 
helpful, di,scussions. We also thank the anon;>'mous 
re\'iewers who gave us insightful commen.ts. 
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