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We have developed a hybrid system to predict the secondary structures (a-helix. f-sheet
and coil) of proteins and achieved 66-4 9, accuracy, with correlation coefficients of C,;, =
0-429, C, = 0:470 and C, = 0-387. This system contains three subsystems (‘‘experts”): a
neural network module, a statistical module and a memory-based reasoning module. First,
the three experts independently learn the mapping between amino acid sequences and
secondary structures from the known protein structures, then a Combiner learns to
. combine automatically the outputs of the experts to make final predictions. The hybrid
system was tested with 107 protein structures through k-way ecross-validation. Its
performance was better than each expert and all previously reported methods with greater
than 0-99 statistical significance. It was observed that for 209, of the residues, all three
experts produced the same but wrong predictions. This may suggest an upper bound on the
accuracy of secondary structure predictions based on local information from the currently
available protein structures, and indicate places where non-local interactions may play a
dominant role in conformation. For 64 9, of the residues, at least two experts were the same
and correct, which shows that the Combiner performed better than majority vote. For 779,
of the residues, at least one expert was correct, thus there may still be room for
improvement in this hybrid approach. Rigorous evaluation procedures were used in testing
the hybrid system, and statistical significance measures were developed in analyzing the
differences among different methods. When measured in terms of the number of secondary
structures (rather than the number of residues) that were predicted correctly, the prediction
produced by the hybrid system was also better than those of individual experts.

Keywords: protein secondary structure prediction; hybrid system; neural networks;
memory-based reasoning: statistical methods

L. Introduction higher order structures (e.g. super secondary struc-

Determining the mapping between amino acid  tures (Taylor & Thornton. 1984), domains (Lathrop

sequences and secondary structures (« helix, f sheet,
etc.) is an important step towards our under-
standing of how protein sequences specify their
overall structures and functions. Currently the main
technique to determine protein structures is X-ray
crystallography, which is a slow and often difficult
process. On the other hand, the database of known
protein sequences is growing very rapidly. Thus, it
is increasingly important to develop computational
approaches to determine automatically (predict) the
structures of proteins whose sequences are known.
The correct prediction of secondary structures can
contribute significantly towards this goal. For
example, the knowledge of secondary structures can
provide a good starting point and reduce the search
space in simulation of protein folding by molecular
dynamics (Levitt, 1983) or lattice models (Skolnick
& Kolinski, 1990), or can be used in predicting

et al., 1987)).

Many algorithms have been developed for protein
secondary structure prediction. One of - the first
efforts was made by Chou & Fasman (1974).
Different implementations of their algorithm have
all attained about a 50 to 609, level of accuracy in
predicting the location of a helices, § strands and
*coil”” (i.e. anything other than helix or strand) in a
protein sequence. Garnier, Osguthorpe & Robson’s
algorithm (Garnier et al, 1978) is about 589,
accurate for this task. More recently, their improved
algorithm (Gibrat et al., 1987) is 639, accurate.
Qian & Sejnowski (1988) used an artificial neural
network algorithm to increase the prediction accu-
racy to 649. Similar results have also been
achieved by other researchers (e.g. Kneller et al.,
1990; Holley & Karplus, 1989). Thus there has been
about a 69, improvement of prediction accuracy in
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Secondary structure states (h -- helix, e - sheet, ¢ -- coil)

..... .cCchhhhh hcccccoeoo.....

Amino acid sequence

Figure 1. A window is moved along an amino acid
sequence to extract correlations between the residues and
the secondary structure state of the center residue.

the last 15 to 20 years. which is due to both the
improved computational methods and the increase
of the known protein- structure data. Almost all
these algorithms have adopted a “local strategy'
moving a “window™ (typically covering 7 to 19
residues) -along an amino acid sequence and predict
the secondary structure state of the center residue
in the window according to all the residues inside
the window (see Fig. 1). To assess the accuracy of a
prediction algorithm for proteins whose structures
are not known. it is a common practice to divide the
known protein structure database into two separate
sets: the ‘“training data set” is used to set the
parameters of the algorithm. and the “‘test data set”
is used to test its prediction accuracy. The predic-
. tions produced by the existing algorithms, though
imperfect, can often show the likelihood or tendency
of certain peptide chains. to form particular
secondary structures. It is also important to know
the extent to which the protein structures are deter-
mined by “local interactions™: interactions among
residues adjacent along the polypeptide chain.
Though existing prediction algorithms are all
about 60 to 649, accurate for three-state (a-helix,
B-sheet, and coil) prediction, they can make incor-
rect predictions at different places of an amino acid
sequence. From the point of view of machine
learning (artificial intelligence), secondary structure
prediction is an instance of inductive learning, gener-
alizing from known examples to solve mnew
problems. Different algorithms may work according
" to different principles and can generalize in different
ways. Therefore, a combination of different algo-

rithms can potentially produce a better prediction

than individual ones. Based on this analysis, we
developed a hybrid system to predict the secondary
structures, which indeed improved the prediction
accuracy significantly. Qur hybrid system has three
different modules (“‘experts”): a neural network
module, a statistical module and a memory-based
reasoning module, and a Combiner. The experts
were chosen in such a way that they have different
mathematical properties. In the training phase, the
experts independently learn the mapping between
amino acid sequences and secondary structures from

the known protein structures: the Combiner learns
to combine automatically the outputs of the
experts. In the prediction phase. the three experts
make predictions separately, then the Combiner
takes the predictions from the three experts and
makes final predictions. K-way cross-validation was
used in evaluating the hvbrid system and statistical
significance  measures  were used in  comparing
different prediction algorithms.

Our experiments showed that (1) the hybrid
system had an overall prediction accuracy of
66-19,. which was higher than individual experts
and all previously reported algorithms at greater
than 0-99 confidence level; (2) the three experts not
only had very close overall prediction accuracy,
their detailed predictions also agreed with .one
another much more than with the real structure (i.e.
their prediction accuracy): (3) the accuracy of
prediction algorithms could change as the test data
changes. especially when the test data set was small
(e.g. containing 15 protein sequences): (4) for 209,
of the residues, all three very different experts
produced the same but wrong prediction, suggesting
that with the currently available protein structure
data, 80°, may be the upper bound for the

_secondary structure prediction accuracy using the

local strategy; (5) compared to each expert, the
hybrid system also produced better result in terms
of the number of secondary structures (rather than
the number of residues) that were predicted
correctly.

2. Methods and Materials
* (a) The architecture and training of a hybrid system

Figure 2 shows the overall architecture of our hybrid
svstem. The system contains three “experts™. a statistical
module. a memory-based reasoning module and a neural
network module, and a Combiner. The whole system
produces secondary structure predictions as follows: given
a set of amino acid sequences (i.e. test data). each expert
makes its predictions independently. then the Combiner
takes the predictions from the 3 experts and combines
them to produce final predictions. At the beginning. the
hybrid system learns from the training data set about
mappings between amino acid sequences and secondary
structures. The training of the whole system involves
(1) training the 3 experts and (2) training the Combiner.
How each expert is trained and how each makex predic-
tions are discussed in the following sections. In order to
train the Combiner. half of the training data is used to

" train the 3 experts separately. and the outputs of these
trained experts on the second half of the training data are -

recorded. These outputs are then used as inputs to train
the Combiner. The reason for dividing the training data
set into 2 parts is that the behavior of each expert on

training data can be very different from its behavior on .

the proteins whose structures are unknown: their
performance on the data that they are not trained on (the
second half of the training set) reflects their behaviors on
truly unknown protein structures, which is exactly what
the Combiner should know about and be trained on. The
training of the experts with half of the training data is
done purely for the purpose of training the Combiner.
After the training of the Combiner is completed. each
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Figure 2. The hybrid system has 3 experts. a statistical
module. a memory-based reasoning module and a neural
network module. The Combiner combines the outputs of
the 3 experts to produce a final output.

expert is trained again with the whole training data set.
These trained experts together with the trained Combiner
form a trained hybrid system.

(b) Memory-based reasoning

Memory-based reasoning (MBR{) (Stanfill & Waltz,
1986) is one expert in our hybrid system. The essential
idea of MBR is to use known examples directly in problem
solving. For predicting the protein secondary structures.
this involves matching each segment (window) of amino
acid sequences in the test data set against all the
sequences in the training set, finding its “‘nearest neigh-
bors”, and choosing the secondary structure state of the
majority of its neighbors as the prediction. Similar
approaches have been referred to as the “'nearest neighbor
method™. “exemplar-based reasoning”, etc. Levin el al.
(1986) and Nishikawa & Ooi (1986) called this approach
the ““homologous method™. The key component in this
approach is the distance function or metric used to
compute the neighbors. The choice of a metric is especi-
ally difficult for elements such as amino acids, because
there is no linear ordering among the elements, which are
often referred to as having ‘‘nominal values™. Stanfill &
Waltz (1986) proposed several distance functions for
nominal values in their work on memory-based reasoning.
We improved their functions and applied them to protein
secondary structures in this work.

Based on the idea of MBR. one distance matrix is
computed for each position of the window using the
training data set. At window position i, the distance
matrix D; contains the distance between every pair of
amino acids at that position. The distance between 2
segments of amino acid sequences 4 =a,a,...a, and
B=10b,b,...b, is defined as:

D(4, B) = ‘Z Dya;, by),
=1
where n is the window size, Dya; b;) is the distance
between amino acids a; and b; at position i. The smaller

. 1 Abbreviations used: MBR, memory-based reasoning;
IP, input pattern; SM, statistical module.

this distance is. the more similar a; and b, are in terms of
forming secondary structures. and the less effect it has on
secondary structures if one is replaced by the other. The
distance matrices D; can be computed from the training
data. Assuming there are m secondary structure states s,.
8. ...8, and ¢ different amino acids. x'. x?. ... x*

. a; b e {x'. ... x®}). D{a,.b;) is computed as:

l m
Dya;.b) = — Y Iptsjlan — plsjby)
=1

S 5 3 tptde <

m RGicik=1a=1

~p(s;lb;. xk)l (1)

where x} denotes amino acid x* at window position &;
p(sjla;) is the conditional probability of secondary struc-
ture state s; given that a; has occurred: it represents the
influence on secondar\ structure 3; by the singleton amino
acid at position i. p(s} la x,) is the conditional probability
of s; given both q; and x} have occurred: it represents the
influence on &; by a; together with its neighbor amino
acids. Thus when p(sja) = p(s,{b) and p(sje;, x}) &

P(sb;. xt), a; and b, are similar in determining secondary
structures, and D,(a b;) should be small, which is exactly
what equation (1) yields.

(c) A statistical method

A statistical module (SM) is the second expert in our
hybrid system. It works as follows: for each secondary
structure state s;, if the conditional probability of s, given
a window of n residues a, . . . a,, p(sja, . .. a,); is known,
then the s; that has the highest value for thls conditional
probability is chosen as the prediction for a; . . . a,:

Prediction = {sjlmax p(a,]a,.a,, .. ._a.)},
)

s, € {a-helix, B-sheet, coil}.

According to Bayes Theorem:
. _ p(s) pla, - - . als;) 5
p(sja, ... a,,). pa, . a) (2)

where p(s)) is the probability of s; and p(a, - . . a,ls;) is the
probability of a, ...a, in secondary structure state s;;
pla, . ..a,) is the probability of a,...a, in all states.
Since we only want to find the largest p(sja,...a,)
pla; . ..a,) need not be computed. Currently there is not
enough protein structure data available for us to compute
the frequencies of a, ...a, in each state s; in order to
estimate p(a; ...a,ls;). They have to be estimated by
some simpler terms. We extend and apply the
Bahadur-Lazarsfeld expansion (Bahadur. 1961) here
(which only deals with binary variables in its original
form). Assuming that y,, y,, ...y, are random variables
with nominal values, then

Py v =[p(z)

x{l-i- Y Za+ Y Zuut ..

i<k i<k<h

} 3)

where Z, is the second order correlation between y; and
Y

- _ Py )

“ 7 plydp(y)



1052

X. Zhang et al.

and Z,, is the third order correlation among y;. y, and y,:

7. =P Y 94 _l)
T\ pydp(y)piy)
_(Pyew) ) _(Pyw)
PLyIPLYy)

PP
_ ( P(Ys- Y») -1\
PYIP(ys)
and so on.

In practice. for the secondary structure prediction
problem, we can only estimate up to the second order

correlations with the currently available protein structure

data. The reliability of these estimates depends on the
sample size used. Thus. we postulate the following
equation:

play.....als) = H plajls;):

140, ¥ fu-(-PO%l8) )| 4
[ +C; ._gfm (p(a..lsj)p(allaj) (4)

where f;, is proportional to the size of the sample in which
ratio
Pla;, ayls))
plajs;)plays;)
is computed, to represent its reliability:

f _ plals)plals)
7\ (I=p(ajs (1 —plals,)

Some observations about equation (4): (1) Compared
with equation (3), correlations among 3 or more residues
are ignored. This is due to the limited sample size. This
truncation may have an overall positive or negative effect
on the contribution from higher-order correlations in the
approximation. thus coefficient C, is introduced to
compensate for this. (', can be experimentally deter-
mined. (2) When there are no higher-order correlations
among the residues in a window (i.e. they are all indepen-
dent). p(a,.....q,ls) is reduced to ]_]..p(a,-lxj). which is
correct. (3) Information of all € possible pairs of residues
in a window of size n is used here. whereas in a commonly
used statistical method. the GOR ITI method, only n—1
pairs are used. (4) If the pairwise correlation terms are
small and the approximation log(l +x) = x is used. we get
the following equation:

P . . als)

¥ Jar P ) |)
( ()

 praga Ipeags )

4
X n plagds;) e

This is exactly the form in Lazarsfeld’s original expansion
(Lazarsfeld. 1961). which he derived from a completely
different path. One advantage of equation (5) is that it
guarantees that the probability approximation is non-
negative, which equation (4) does not do. Equation (5) is
the final form of the statistical expert used in this work.

(d) Artificial neural network

Artificial neural networks have been used widely in
many applications (McClelland & Rumelhart, 1986).
including protein secondary structure prediction (Qian &
Sejnowski, 1988; Kneller ef al., 1990). An artificial neural

Output layer

Hidden layer

Input layer

Figure 3. A one-hidden-layver feedforward artificial
neural network. The network computes its output based
on the values of the units at the input layer.

network usually consists of a large number of simple
processing units connected by weighted links. Each unit
computes its output by applying an “activation function™
to its inputs. The training algorithm used in this work, the
Back-propagation algorithm (Rumelhart e al., 1986).
works on a particular kind of artificial neural network. a
layered, feed-forward network (see Fig. 3), where the
processing units are arranged in layers: there is an input
layer, an output layer. and one or more “‘hidden layers”
(layers between the input and output layer). A feed-
forward network computes its output in the following
fashion: first. the input layer is set according to an input
pattern; then one layer at a time, from the input to
hidden to output layer, the units compute their outputs
by applying an activation function to the weighted sum of
the outputs from the units at the lower layer. The weights
come from the links between thé units. The *‘sigmoid
function” is often used in feedforward networks as the
unit’s activation function: ‘

0.;= T3¢

Where O; is the output of unit j at layer i. and r is the
weighted sum of outputs from units at one layer below:

= i J
Ir= Z il a0k
k

wii_, is the weight of the link from unit k at layeri—1 to .
unit j at layer i. This can al=o be seen as a projection of
the network input to a certain direction specified by the
weights. Thus. each hidden unit represents a different
projection from the multiple dimensional input space to a
new space whose dimensionality is determined by the
number of hidden units in the network. _
The Back-propagation algorithm *‘trains” a layered
network by adjusting the link weights of the net using a
set of “training examples”, Each training example

- eonsists of an input pattern and an ideal output pattern

that the user wants the network to produce for that input. .
The weights are adjusted based on the difference between
the ideal output and the actual output of the network.
This can be seen as a gradient descent process in the
weight space. An “epoch training cycle™ consists of
presenting all training examples once to the network. and
then adjusting the weights on the basis of the accumu-
lated errors at the output layer. A number of epoch cycles
may be required before the output errors are reduced to
an accepted level. After the training is completed. the
network can be applied to inputs that are not in the set of
training examples. For a new input pattern IP, the .
trained network tends to produce an output similar to the
training example whose input is similar to IP. This can be
used for interpolation. approximation, or generalization
from examples depending on the goal of the user.
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Table 1
Protein structures used in this work

Protein Code Subunit  Length No.H No.E
Cytochrome €550 1535C 134 35 5
Cvtochrome B362 (E. coli. oxidized) 1568 110 67 1]
1-Arabinose-binding protein ARP 306 106 20
Actinoxanthin FACX - 107 0 47
Phospholipase A2 1BP2 123 54 8
Cytochrome ¢5 (oxidized) 10C5 83 39 0
Cytochrome ¢ ICCR 111 + 0
Calcium- -binding parvalbumin B 1ICPV 108 52 6
Crambin ICRN 46 20 4
Subtilisin carlzberg (inhibitor) ICSE 63 1m - 22
17/112 Ribosomal protein (C-terminal domain) ICTF 68 35 18
Cytochrome c3 1CY3 118 16 0
Hemoglobin (ervthrocruorin, deoxy) 1ECD 136 7 0
Elongation factor tu (domain i) 1ETU 196 . 78 36
Immunoglobin FAB 1FB4 (HL) 445 11 208
FC fragment (1GGI class) 1FC1 (A) 206 15 95
Immunoglobin fc and fragment B of prolmn a '

. complex 1FC2 (C) 43 21 0
Ferrodoxin 1FDX 54 5 4
Flavodoxin 1FX1 147 13 32
Ferredoxin 1FXB 8l 10 0
Glucagon (pH 6-pH 7 form) 1GCN 29 14 0

° ¥ Crystallin 1GCR 174 5 7
Glyceraldehyde:3-phosphate dehydrogenase 1GDI ©O) 336 73 95
Glutathione peroxidase IGP1 (aA) 184 43 29
Oxidized high potential iron protein (HIPIP) 1HIP 85 10 9
Hemerythrin (MET) 1HMQ (A) B B & 73 0
Insulin 1INS (A D) 51 22 3
Leghemoglobin (Acetate, MET) 1LHI 153 107 0
Lysozyme ‘ 1LZ1 130 39 10
Myoglobin (DEOXY, pH 8+4) IMBD - 153 113 0
Immunoglobulin FAB fragment (MC/PC603) IMCP (HL) 442 8 211.
Melittin IMLT (A) 26 2 0
Neurotoxin B INXB 2 0 26
Pseudoazurin 1PAZ 120 17 “
Plastocyanin 1PCY 99 4 35
Hydroxybenzoate hydroxylase : 1PHH 394 119 96
Calcium-free phospholipase A2 ) 1PP2 (L) 133 48 8
Avian pancreatic polypeptide 1PPT 36 18 0
Rhodanese IRHD : 293 81 2
Ribonuclease A IRN3 124 22 48
Ribonuclease T1 isozyme 1RNT 104 17 28
Subtilisin BPN ISBT 275 83 19
Trypsin (SGT) ISGT 240 21 T
Scorpion neurotoxin (variant 3) 1SN3 © 65 8. 12
Trypsinogen complex with porcine pancreatic

secretory 1TGS (U] 57 9 11
Triose phosphate isomerase ITIM (A) 248 106 2
Tonin 1TON 238 10 71
Ubiquitin 1UBQ 6 12 24

. «-Bungarotoxin 2ABX A) - Bt ] 0 4
Actinidin (sulfhydryl proteinase) 2ACT 218 56 40
Acid proteinase. penicillopepsin 2APP : 323, 30 145

- Acid proteinase (rhizopuspepsin) 2APR 325 26 146
_ Azurin (oxidized) 2AZA (B) 129 13 41

* Cytochrome B5 (oxidized) 2B5C .8 21 21
Carbonic anhydrase form B {(carbonate . oo ’

dehydratase) : 2CAB : 256 17 79
Cytochrome ¢’ ’ . 2CCY o (A) - 127 20 0
Cytochrome ¢3 - - 2CDV - : -107 27 10
Chymotrypsinogen A 2CGA A) 245 18 79
Chymotrypsin inhibitor 2 (CI-2) 2CI12 65 11 14
Concanavalin A 2CNA 237 4 103
Cytochrome P450CAM (camphor monooxygenase) 2CPP ) 405 180 41
Citrate synthase 2CTS 437 257 6
Cytochrome ¢ peroxidase : 2CYP 293 134 16
Gene 5 DNA binding protein 2GN5 87 0 4
Hemoglobin (deoxy) 2HHB (A B) 287 197 0
Hemoglobin ¥ (CYANOMET) 2LHB 149 100 0
Lysozyme 2LZM 164 109 14

Cytoplasmic malate dehy drogenase 2MDH (A B) 649 213 110
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Table 1 (continued)

Protein Code Subunit Length  No. H No. E
CD. ZN Metallothionein (isoform 1) 2MT2 6l 0 0
Ovomucoid third domain 20V0 b4 10 9
Prealbumin (human plasma) 2PAB (A) 114 8 39
Proteinase K 2PRK 279 66 )
Staphylococcal nuclease complex 28NS 141 26 28
CU.ZN Superoxide dismutase 250D (B) 151 0 54
Streptomyces subtilisin inhibitor 28SI 107 R 26
Satellite tobacco necrosis virus 28TV 184 18 2
Tomato bushy stunt virus 2TBV (C) 321 4 2
Cytochrome ¢551 (oxidized) 351C 82 38 0
Adenylate kinase 3ADK 194 106 25
Bacteriochlorophyll 3BCL 356 57 170
Cytochrome ¢2 (reduced) 3C2C 112 44 0
‘Native elastase 3EST 251 13 82
Ferredoxin 3FXC 98 7 15
Catabolite gene activator protein-cyclic AMP
complex 3GAP (A) 208 64 21
" Glutathione reductase, oxidized form (E) 3GRS 461 132 111
Calcium-binding protein 3ICB ] 43 0
Phosphoglycerate kinase complex with ATP 3PGK 415 143 46
Phosphoglycerate mutase DE-phospho enzyme  3PGM 230 69 15
Rat mast cell protease 11 3RP2 (A) 237 12 83
Rubredoxin 3RXN 52 0 8
Wheat germ agglutinin (isolectin 2) 3WGA (B) 171 {3 16
TRP aporepressor 3WRP 101 71 0
APO-liver alcohol dehydrogenase 4ADH T4 79 77
Aspartate carbamoyltransferase 4ATC (A B) 163 133 65
Carboxypeptidase Aa (COX) complex. 4CPA (I) 7 0 6
Dihydrofolate reductase complex 4DFR (B) 159 29 56
Ferredoxin 4FD1 106 18 14
Flavodoxin (semiquinone form) 4FXN 138 47 29
Lactate dehydrogenase APO enzyme M4 4LDH 333 11 37
Trypsin inhibitor 4PTI - 58 8 14
B Trypsin, diisopropylphosphoryl inhibited 4PTP 234 16 72
Southern bean mosaic virus coat protein 4SBV (@] 223 32 72
Thermolysin complex 4TLN 316 117 54
Troponin C 4TNC 160 101 6
Carboxypeptidase Ax (COX) 5CPA 307 1 30
Catalase -1CAT (A) 198 137 71
Papain CYS-25 oxidized 9PAP 212 49 36
Total 113 19.861 5324 1098

If there is more than 1 subunit in a protein. column Subunit indicates which subunit(s) was used.
Length indicates the number of residues in the protein sequences used. No. H indicates the number of
residues in a-helix: No. E indicates the number of residues in f-sheet. There are 107 proteins in this

Table, with 113 subunits. 19.86] residues. -

(e )' Database

A database of 107 proteins was selected from
Brookhaven Protein Data Bank. Tt contains 19.861
residues. 113 subunits. All sequences (subunits) are less
than 509, homologous with one another. The DSSP
program (Kabsch & Sander, 1983a) was used to assign the
secondary structure state .of each residue. The DSSP
program assigned 7 states, B, E, G, H, S, T and “‘the rest”
to the residues in our database. For the purpose of this
work, H was considered « helix. E was considered f sheet,
and the rest were considered coil. Table 1 lists names of all
the proteins in our database.

(f) Prediction accuracy measurements

In this work, we adopted the commonly used definition
of prediction accuracy, which is the percentage of
correctly predicted residues for the 3 types of secondary
structures:

Q - 9. + Yg + Geoit
3 N '

where N is the total number of residues in the test data
sets, g, is the number of residues of secondary structure
type s that are predicted correctly, s € {x-helix, B-sheet.
coil}. To measure the “quality” of the prediction on each
type of secondary structure. Matthews’ correlation coeffi-
cient was also used. For secondary structure type s,

(Ps : n:) — (u: 3 0,)
S u) (0,40, (P, 1,) (P +0,)

where p, is the number of positive cases that were
correctly predicted; r, is the number of negative cases
that were correctly rejected; o, is the number of over-
predicted cases. and u, is the number of underpredicted
cases. These coefficients thus measure the differences of
predictions for different types of structures.
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Table 2
Number of residues. helix and sheet contents and names of protein sequences in each test group

No. Helix Sheet
residue (%) (%)

Proteins and their maximum
homology with other proteins (%)

Average of

Group maximum (%)

1 2417 296 2.2 1FC2-C(39-5). 2MT2(32:8). 1FXB(346). 2B3(32:9). 302(°(43:7). . 342
INNS(31-2). 2LHB29-5). IMBD29-4). 1ETU:2490). 2ACT(45-0).
IMCP-H(42:8). 18BT(36-0), 2MDH-B(37-51. 3BCL(19-4) .
IGCN(44-8). 1PPT(38:9), 4PTI(34:5), 1UBQ(338-2). 3WRP(31-7), 315
156B(30-9), 2PAB-A(31-6), 1CY3(30-5). 4FXN(31-2). 2STV(26:6),
3RP2-A(31-2). ITON(374), 2CAB(24-2). 4LDH(21-0). 2CTS(19-2)
1INS-D(40-0), 2C12-1(369), 1SN3(32-3). 1PCY(31-3). 327
THMQ-A(29-2), 2AZA-B(30-2). 2HHB-B(41-1). ILH1(301),
3GAP-A(24-5). 1FB4-H(415), 4PTP(41:9). 2CYP(21-8).
2APR(39°1). 3GRS(184)
IMLT-A(46-2), 20V0(33:9), 351C(35-4). 3FXC(30:6). ICCR(342), 3135
1PAZ(32-5). 1ECD(28:7), 2LZM(26-2). 3WGA-B(24-6),
IMCP-L(42:3). 2CGA-A(40:0), 1ABP(225). 2TBV-C(22-7),
IPHH(21'1) : )
ICRN(370), INXB(37:1). 1ICTF(39:7). 1IRNT(29-8). 2CDV(29-9), 301
1RN3(27-4). 1PP2-L(38:3), 4ATC-B(30-1). IGP1-A(255).
4SBV-C(27-0), 3EST(35'5), 5CPA(21-8). 4TLN(21-8). 3PGK(20-5)
3RXN(385), 1FDX(370), 3ICB(36-0). 2GN5(32-2). ICPV(352), 318
1LZ1(26-9), 2HHB-A(42:6), 2S0D-B(28:5). 1FC1-A(252),
9PAP(46-2). 1SGT(32-1), 4ATC-A(22-3). 1GD1-0(223), 4ADH(20-3)

7 2507 272 21-0  4CPA-I(351). ICSE-I(349), 1CC5(33:7), 4FD1(311), 28S1(327), 304
: ) 1BP2(41-5), 1FX1(27-9), 4DFR-B(27-0). 3ADK(289), 3PGM(26-1),

2 2465 281 19-6

3 2550 275 22-7
4 2450 251 20-7

5 2492 260 20-1

6 2476 2317 20-4

2CNA(249). IRHD(23:5), 2APP(39-3). 2CPP(19-5)

8 2504 274 194

1INS-A(47-6), 1TGS-1(35°1), 2ABX-A(36-5). 1HIP(32'9), ) 334

1ACX(3-6), 2CCY-A(34-6), 155C(36-6). 4TNC(28-1), IGCR(24-7),
1FB4-L(43'1). ITIM-A(24-2), 2PRK(355). 2MDH-A(37-7),

7CAT-A(171)

The number of residues, helix and sheet contents, and the names of the protein sequences (subunits) in each test group. (1FC2-C,
subunit C of 1FC2.) The number in the parenthesis after each protein name is the maximum homology between that sequence and all
sequences in other groups (i.e. the training data set for that test group). The last column is the average of the maximum homology of .

each group. .

(g) A measure of statistical significance

When comparing different prediction algorithms, we
need to know whether the differences in prediction accu-
racy among them are statistically significant. Statistics
theory gives us a method to compute the “significance
interval” for the difference between 2 population propor-
tions (Daniel. 1987). In the case of secondary structure
prediction. the “proportion™ is the percentage of residues
in a set of test data whose secondary structure state has

been correctly predicted. Assume the prediction accuracy

of 2 algorithms are p, and p, for 2 test data sets of ry and

r, residues. respectively. and the test data are randomly

selected. then we say that we are a x 1009, confident that

the accuracies of the 2 algorithms are really different if
Py =pad > 1.

where:

1=z(]+a/2).\/1’|“_1’1)+Pz“"‘?2)’ )
o LS} T2

z is the inverse cumulative normal distribution. For
example, when a =095, 2(1+af2)=196; if r,=r, =
20.000. the significance interval is / ® 09%; ifry =r, =
4000, I = 2-19%,. If we choose @ = 099. r, = r, = 20,000,
then I = 1-2%,. Thus, the bigger the difference between 2
prediction accuracies, the more significant it is. For the
same difference, the more test data used, the more signifi-
cant it is (and the more confident we are). Equation (6) is
used in this paper to determine whether the difference in
the accuracies of 2 different predictions is statistically
significant.

3. Experiments and Results
(a) K-way cross-validation

To evaluate the hybrid system, all the proteins in
our database were-randomly divided into eight
groups. In each test. one group of proteins was used
as the test data set and the rest as the training data
set. The whole experiment consisted of eight such
tests, i.e. eight -independent runs of the hybrid
system, each time on a different test data set. This
way, there was no overlap between training data
and test data, and ‘every protein was used as test
data once. This is the so-called “‘k-way cross-valida-
tion” testing procedure. Table 2 lists the proteins
and the number of residues in each group. the «
helix and § sheet contents in the group, as well as
the degree of - homology between proteins in
different groups. :

~(b) Window size and other choices

Throughout this work, a window size of 13
residues was used. Each expert looked at 13 residues
at a time and predicted the secondary structure
state of the center residue in the window. The
Combiner looked at the predictions of 13 residues
from each expert and made a final prediction for the
center residue. For each amino acid sequence in the
test data set, the window was moved over the whole
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sequence. and a prediction was made for every
residue.

There were other choices that had to be made
before starting our k-way cross-validation experi-
ment with the hybrid system. They included (1) the
number of hidden units and the number of training
cveles for neural networks: (25 the threshold for
“nearest neighbors™ in MBR module: and (3) the
coefficient C; in the SM. If these choices were made
according to the system’s performance on the test
data set. then they might be fine-tuned to fit the
particular data set and make the system’s accuracy
appear higher than it really is. To avoid this, prior
to the k-way validation experiment, a “pilot set” of
20 proteins was randomly chosen from the database,
and the above choices were made based on the
system’s performance on this pilot set. (The pilot set
consisted of: 1INS-A, 3RXN, 2MT2, ICTF, 351C,
2CDV, THMQ-A, 1RN3, 1PP2-L, 4FXN. 2SOD-B,
IMBD, 1GP1-A, 1FB4-L, 4PTP, 1TON, 2PRK,
4ATC-A, 4LDH, 1PHH)) '

(c) MBR and SM: training and prediction

- In Memory-Based Reasoning module, first the
distance matrices were computed using the training
data set. There was one distance matrix for each
position of the window, see equation (1) for details.
Then for each segment (window) of the amino acid
sequences in the test data set, b,, b,, . .. b,, the top
25 instances in the training data set that had the
shortest distance to it were considered its neighbors.
The strength of prediction (score) for each
secondary structure state was the percentage of
neighbors in that state weighted by the inverse of
their distances. The structure state that had the
highest score was taken as the prediction by MBR.

In the statistical module, the frequencies of
singletons and pairs of amino acids within a window
a,, ..., a, were calculated for each structure state s;
in the training data set. to approximate the condi-
tional probabilities p(ajs;)s and p(a;, a,ls;)s. Then for
each segment of amino acid sequences in the test
data set, b,,b,, . . . b, these probability values were
used to estimate the probability p(sjlb,,b,,...b,)
according to equation (3) (C; = 1-5 was used in this
work), where s; is one of the secondary states
(x-helix, pB-strand and coil). The value of
p(silby, by. ... b,) was taken as the score of predic-
tion for structural state s;, and the state that had
the highest score was taken as the prediction by SM.

(d) Training neural networks

One important issue in training neural networks
by the Back-propagation algorithm is deciding
when to stop training. If a network is trained
through too many cycles, the network tends to
memorize the training examples but generalizes
poorly on the inputs that it has not been trained on
(i.e. test data). One practice is to monitor the
performance of the network being trained on the
test data, and to stop training when the perform-
ance peaks. This strategy cannot be used in real

situations where the true answer is truly unknown.
We used the following techniques to solve this
problem: (1) limiting the number of training cycles:
(2) limiting the number of hidden units. thus the
number of free variables (the “memory capacity™)
in the network: (3) when available. using a separate
control data set to control when to stop training the
network, that is. to monitor the performance of the
network being trained on the control data set and
stop training when the performance peaks.

A one-hidden-layer neural network was used as
one of the three experts. This network is referred
to as EXPERT-NXN in the following discussion.
A total of 21 input units was used to encode one
residue. one unit for each of the 20 amino acid types
plus one end marker. With a window size of 13
residues, there were 21 x 13 = 273 input units total.
EXPERT-NN had three output units. one for each
of the three secondary structure states (a-helix,
B-sheet and coil). The network had only two hidden
units. EXPERT-NN was trained up to 200 epoch
cycles on the training data set, and the network
weights that gave the best performance on the
training set during training were saved as the final
result of training. The activation of the output units
were used as the score of prediction for the
corresponding secondary structure.

The Combiner of our hybrid system was also a
one-hidden-layer neural network. The Combiner
took the outputs of the three experts as inputs and
made final predictions based on these outputs. For
every residue, each expert generated three numbers
representing the prediction score for x-helix, f-sheet
and coil, respectively. The Combiner took the
predictions of 13 residues from each of the three
experts as its input. thus it had 13x3x3 =117
input units. It also had three output units. one for
each- of the secondary structure states. As discussed
in Methods and Materials. in order to train the
Combiner, the training data ‘set was divided into
two halves, which will be referred to ax {H,} and
{H,} in the following discussion. The three experts
were first trained on the first half of the data set
{H,}. Then they were applied on the second half
{H,}. Their outputs on {H,}. {Output(H,)}, were
then used as input patterns for training the
Combiner. Similarly, the three experts were also
trained on {H,} and their outputs on {H,},
{Output(H,)}. were recorded. Finally. the Combiner
was trained up to 200 epoch cycles, using
{Output(H,)} as training data and {Output(H,)}
as control data. The weights that gave the
best performance on both {Output(H,)} and
{Output(H,)} during training were saved as the
result of training the Combiner. A total of 30 hidden
units was used in the Combiner. Since there was a
control data set here, the number of hidden units
was less crucial here than in EXPERT-NN.

(e) The hybrid system improved prediction accuracy

Table 3 shows the results for the eight test data
sets in our k-way cross-validation experiment. Table



Protein Secondary Structure Prediction 1057

Table 3
Prediction accuracy on test data sets
No. No. EXPERT-NN M MBR Hybrid
Group sequence residue (%) (%) (%) (%)
| 14 2417 i o 628 644 653
2 15 2465 63X 633 639 66-3
3 14 2550 622 636 647 66-2
4 14 2450 52-3 2-9 640 662
5 14 2492 632 62-4 644 666
6 14 2476 652 641 658 681
7 14 2507 2-3 638 631 651
.8 14 : 2504 . 649 653 655 67-5
Total 113 19.861 631 635 645 66-4

The prediction accuracy on each test data set by the 3 experts and by the hybrid system. No. '
sequence is the number of sequences (subunits) in each group: No. residue is the number of residues in

each group.
4 shows the accuracy for each sequence. Overall, for Table 4
the prediction of secondary structures a-helix, The accuracy on each protein sequence (subunit) by
. B-sheet and coil, EXPERT-NN was 6319, the three experts and the hybrid system
accurate, MBR was 64-59%, and SM was 63:59%,. The
hybrid system was 6649 accurate. The total ) SM  MBR EXPERT-NN Hybrid
number of residues used in the experiment was  Protein %) (%) (%) (%)
19,861. Accord'mg t_o the »s'tatlstlcal sngplﬁcance 155C 619 246 649 709
measures descnbefi in equation (6), the improve-  |s5p 627 618 700 64'5
ment of the hybrid system over each expert was  1ABP 598 333 578 575
statistically significant (with higher than 0-99 confi-  1ACX o1 66 . 607 61-7
dence level). Thus we are highly confident that our  1BF2 320 553 520 528
hybrid system really improved the prediction o 59 23 599 m
A AL A p p : I(CR 676 03 70-3 730
accuracy. 1CPV 63-9 356 60-2 667
The Matthews’ correlation coefficients for each ICRN 500 365 500 522
expert and for the hybrid system are shown in Table ~ 1¢SE- 651 683 635 714
5. All three experts had similar coefficients and :g{g gg ‘;('); ggg ‘ ?:;
produced better prediction on « helix and coil than  |gcp 149 434 368 156
on B strand. One reason for this might be that a  1ETU 659 714 709 770
single f strand can hardly be stable; more than one  1FB4-H a6 55 659 712
strand get stabilized when they interact with one IIE(BIH\‘ ?ﬁf "38, g‘rl, g'll
another to form a B sheet: this interaction is often | pearc: i e 605 791
not local along the sequence and thus cannot be |FDX 22 96 04 - 722
captured very well by the local approach. Thus, no  I1FXI] 524 578 571 578
matter what algorithm is used, § strand would still ~ |FXB 27 w3 104, 718
be the most difficult state to predict. The hybrid :((‘;E; :';; ;l,; ;gg ;gg
system improved the prediction for all the structure  ¢p).0 571 601 643 631
* states. ' . 1GP1-A 647 603 658 652
1HIP 647 71 60-0 : 600
THMQ-A 600 366 584 637
{f) A single small test data set is dangerous HN~-A 76 3%l 476 429
* . 1INS-D %7133 767 833
From Table 3 we computed the average difference  1LHI W6 614 680 725
in prediction accuracy among the three different 1LZI 38 669 700 685
experts for the same sets of test data, which was 1MBD 63 63 601 680
0. - . IMCP-H 644 157 613 815
0-9%. This shows that the overall accuracies of the | \i¢p.L 650 3 614 691
three expe:rts were very close. We also computed the IMLT-A 423 50-0 500 462
average difference for the same expert on the eight  INXB 77 - 613 661 629
different test data sets, which was 1-39. Thus, if 1PAZ %2 658 633 - 667
h d : . : 1PCY 586 646 657 677
each test data set is observed independently, the | pu.u 581 0 .
difference in prediction accuracy caused by th e pod tos
! p racy caused by the ppaL 654 07 669 692
different test data sets were at least as large as the  1PPT 78 833 750 889
difference brought about by the different experts. IRHD 642 662 648 66:2
This observatio t . o : 1RN3 548 62-9 581 669
i ation argues strongly against using a IRNT 611 615 83 673

single small test data set: (1) “‘statistical noise” can
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Table 4 (continued )

Total

SM MBR EXPERT-NN Hybrid

Protein (%) (%) (%) (%)
18SBT 633 684 665 673
ISGT 667 754 65:0 783
ISN3 738 769 0% 723
ITGS-I 632 579 667 561
1TIM-A 706 661 69-0 738
1ITON 70-2 782 69-7 756
1UBQ 613 553 658 632
2ABX-A 89-2 784 811 811
2ACT 683 720 67-0 734
2APP 61-9 79 557 594
2APR 69-2 689 668 683
2AZA-B 157 51-2 481 481
2B5C 659 671 635 553
2CAB 641 695 71-1 695
20CY-A 756 638 795 835
2CDV 729 738 710 766
2CGA-A 64-9 747 584 722
20C12-1 60-0 708 646 708
2CNA 578 586 60-3 591
2CPP 696 61-5 615 659
2CTS 680 62:5 641 691
2CYP 638 635 60-1 648
2GN5 69-0 655 62:1 70-1
2HHB-A 723 702 660 780
2HHB-B 61-0 596 479 616
2LHB 685 658 60-4 671
2LZM 60-4 646 61-6 616
2MDH-A 552 574 568 617
2MDH-B 480 532 471 520
2MT2 95:1 91-8 95-1 96:7
20V0 625 643 60-7 661
2PAB-A 500 509 596 588
2PRK 638 69-9 638 713
25NS 61-0 60-3 617 638
2S0D-B 662 675 722 715
25SI 748 692 720 785
2STV 51-1 538 511 53-8
2TBV-C 595 62:0 60-1 645
351C 81-7 768 793 866
3ADK 644 680 61-9 696
3BCL 197 107 50-0 147
302C 714 821 59-8 68-7
3EST 701 7T 64-9 793
3FXC 724 755 653 776
3GAP-A 505 60-1 548 567
3GRS 588 557 62:7 633
3ICB 853 893 867 90-7
3PGK 660 660 675 677
3PGM 639 678 67-4 683
3RP2-A 549 66'7 553 62:0
3RXN 827 84-6 846 846
3WGA-B . 801 772 80-7 80-7
3WRP 752 03 66-3 733
4ADH 572 543 594 575
4ATC-A 584 613 610 635
4ATC-B 621 614 64-1 627
4CPA-1 784 676 730 703
4DFR-B 591 585 597 629
4FD1 679 736 55 726
4FXN 681 638 645 68-8
4LDH 598 583 59-2 61-3
4PTI 70-7 603 707 62-1
4PTP 714 82:5 68-8 778
4SBV-C 532 541 572 559
4TLN 579 62:3 582 658
4TNC 837 781 775 794
5CPA 60-9 638 638 66-4
7CAT-A 657 645 655 64-9
9PAP 703 80-7 703 764
635 631 664

Table §
The Matthews’ correlation coefficients for each expert
and the hybrid system on each structural state

Method Coait . G,

SM 0390 0418 03530

MBR 0-396 0416 0357

EXPERT-NN 0-395 0-383 0333

Hybrid 0429 0470 0-387
Table 6

The percentage of total residues for which two experts
produced the same secondary structure prediction

EXPERT-NN MBR SM Hybrid

EXPERT-NN 76:69, 8432, 8290,

MBR T17% 200,

SM 83:6°,
Table 7

Percentage accuracy

One correct Two correct  Three correct  Three incorrect

7669, 6409, 5069 1949

make the same algorithm have different accuracies
on different test data sets if the sets are small;
(2) the difference among different algorithms. even
if it truly exists, can be easily “‘buried” by such
statistical noise. Thus, large or multiple test data
sets should be used whenever possible.

(g) Different algorithms made similar predictions

The three experts used in our experiments did not
only have similar overall prediction accuracies. but
also made similar predictions for each sequence.
Table 6 shows the percentage of the residues in the
test data sets for which different experts produced
the same predictions. On average, each pair of
experts agreed with each other on about 809; of the
total 19,861 residues. All three experts produced the
same prediction on about 70%, of the total residues
{not shown in the Table). Table 7 shows the percent-
age of residues for which at least one expert was
correct, at least two experts were correct, all three
experts were correct and all three experts gave the
same but wrong predictions. For about 209, of the
residues, all three experts produced the same but
wrong predictions. This, together with the informa-
tion from Table 6 indicates that the “local rules”
(the rules mapping short segments of amino acid
sequences to secondary structures) obtained by the
three very different experts were actually quite
similar, but they did not apply quite as well to the
test data. This may suggest an upper bound on the
secondary structure prediction accuracy based on
local information from the currently available data.
In places where all algorithms were the same but
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Table 8

Accuracy of predictions

z Helix B Sheet
Method Correct Over Under Coef. Correct Over Under  (Coef.
SM 345 195 171 (-392 449 209 375 (283
MBR 304 182 207 0341 44 251 420 0244
EXPERT-NN 314 181 202 351 421 316 403 0-238
Hybrid 353 162 163 0445 450 234 74 0335

The number of correct predictions (Correct). underpredictions (Under). overpredictions (Over) for x
helix and # sheet by each expert and the hybrid system. Coef. is the Matthews™ correlation coefficient

(see Methods and Materials).

incorrect, the structures might be determined by
non-local interactions. Among the residues where all
three experts did agree with one another. they were
correct for 719, of the residues. Thus. if we only
consider the cases where all three experts agreed, we
have a much higher prediction accuracy.

(h) Homology between training and test data set

It is known that if the training data and the test
data are identical or highly homologous, then the
prediction accuracy could be misleadingly high.
However, when the degree of homology between
training and test data was below 509,. we did not
find strong positive correlations between the predic-
tion accuracy and the degree of homology. For
example, the degree of homology between 1GCN,
IMLT-A and 1INS-A and their training data were
4489, 46:2% and 47-6%, respectively, and their
prediction accuracies were quite low (see Table 4);
whereas 2CTS, 3GRS and 7CAT-A had very low
homology with their training data (19-2%, 1849,
and 17-1%,. respectively). but their prediction
accuracies were much higher.

(i) Secondary structures as individual units

Often it is more important to predict correctly the
occurrence or absence of a secondary structure (a
helix or § strand) as a whole rather than just to
predict the states of individual residues. Thus the
following criteria were also used in this work to
evaluate the predictions of different methods: we
took an 2 helix or f strand as an individual unit.
and checked how many of these secondary struc-
tures were correctly predicted (positive cases), how
many of them were. not predicted at all (under-
predicted), how many were predicted which do not
exist in the real structures (overpredicted). Then a
Matthews’ correlation coefficient is calculated for
each method. We found that the hybrid system had
the most positive cases and the fewest overpredic-
tions and underpredictions. (Note that this is in
terms of number of secondary structures, not
residues.)

Specifically, in this work an « helix is said to have
been predicted if at least four continuous residues in
a sequence are predicted to be in H state; a § strand

is said to have been predicted if at least two con-
tinuous residues were predicted to be in E state. If
the overlapping region between a real secondary
structure and a predicted secondary structure of
the same type is greater than half of the length
of the real structure or the predicted structure,
then the real secondary structure is considered to
have been correctly predicted. If more than one
predicted secondary structure overlaps with one
real secondary structure, only one of the predicted
secondary structures is considered as a correct
prediction, and the rest are counted as overpredic-
tions. If one predicted secondary structure overlaps
with more than one real secondary structure, only
one of the real secondary structures is considered as
correctly predicted, and the rest are counted as
underpredictions. Table 8 lists the correct predic-
tions, overpredictions, underpredictions and
Matthews™ coefficient for a helix and g strand by
each expert and the hybrid system according to
these criteria. (In calculating Matthews’ coeffi-
cients, the residues between 2 helices (sheets) are
considered to form 1 non-helix (non-sheet).) The
hybrid system produced the best result by this
criteria as well.

No doubt the above criteria are not perfect. And
the details such as the numbers 2 for § strand and 4
for a helix are to some extent arbitrary. However,
we need some criteria to capture the intuitive notion
of “how many secondary structures are predicted
correctly”. We believe the above criteria serves as
an unbiased, first-order approximation to that. It
provides a new perspective to evaluate different
prediction methods. For example. SM is better than
MBR and EXPERT-XXN by this criteria. whereas
that is not the case if we count the number of
correctly predicted residue states (see Table 4).

(j) An example

Figure 4 shows the prediction for protein 1PAZ
by each expert and the hybrid system. It illustrates
the points discussed in previous sections. Note that
the inputs from each expert to the Combiner in our
hybrid system are the three prediction scores for
each of the three states (¢ helix, § sheet and coil),
not just the predicted states themselves; and the
Combiner looks at the prediction scores of 13 posi-
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0 10 20 30 40 50 60
Protein: ERIEVEMLNKGAEGAMVFEPAYIKAKPGDTVTFIPVDKGHNVESIKDMIPEGAEKFKSKINERYVLTVTQ
Structure:-eeeceeee600-—000606--0006-~-—006608~— 00—————---—-==——————— eees———
SM: ----ehhhh----- hhhh-hh-ee-—---- eee@e————————-—- hh-h--hhhhhhhh----eeee--
MBR: ---eehhh-h-----ee eee h--h--hhhhh-h----=-----
Expert-NN:---hhhhh-- hehh----=--—---- eee hhh eeeee——
Hybrid: ----eee ee --geeo = hhhhhh----- 6e6-—

70 80 90 100 - 110

Protein: PGAYLVKCTPEYAMGMIALIAVGDSPANLDQIVSAKKPKIVQERLEKVIA

Structure:-eeeeee———-----—- ee6080—————- hhhhhh----hhhhhhhhhhh-
SM: ----eee~—--- hhhhhhhee-——-—-- hhhhhh----hhhhhhhh----
MBR: ee eeeeeo hhhhh hh-hhhhhhh—-
.Expert-NN:---eee———--- hhhhheeee hhh hhhhhhhh--
Hybrid: ----ee———--- hhheeeeee hhhh hhhhhhhhhh--

Figure 4. The secondary structure prediction generated by SM. MBR, EXPERT-NN and the hybrid system.

Structure indicates the secondary structure assignment by the DSSP program.

tions at a time. That is why we can see that in
certain cases the Combiner can override the
majority of the three experts, such as between
residue 0 and 10 of 1PAZ. In some places, all three
experts made the same but wrong predictions. For
example, there is a short f strand between residue
40 and 50 that none of the experts predicted; and
they all predicted a helix between residue 50 and 60
that does not exist in the real structure. In both
cases the Combiner made the same mistake also.
None of the experts could always make better
predictions than others. For example, SM is the only
one that predicted the sheet between residue 20 and
30. MBR is the only one that did not give the false
prediction of a helix between residue 80 and 90, and
EXPERT-NN made fewest mistakes between
residue 50 and 70.

(k) Comparison with other methods

Qian & Sejnowski (1988) used a ‘““cascaded neural
network’ system in secondary structure prediction

and achieved 64:3°, accuracy on a test set of 15
proteins (containing 3520 residues). Their system
contained two networks: the first network took
amino acid sequences as inputs and produced the
initial prediction; the second network “cleaned up”
this initial prediction to produce final predictions.
This system could also be seen as a hybrid system
but with only one expert. We applied their method
to our eight test data sets. Table 9 xhows the results.
This was done not only to compare the final results,
but also to see whether adding two more experts
could really help. The overall prediction accuracy of
the cascaded system on our test data sets was
6402, which, on a much larger scale (19,861 versus
3520 residues), confirmed Qian & Sejnowski’s
results. However, the improvement of the cascaded
network over a single network was only 0-5%, not
159, as reported in their paper. According to our
statistical significance measure (equation (6)), both
0-59, for 19,861 residues and 1-59, for 3520 residues
were not statistically significant differences at confi-
dence level 0-95. We also noticed that there was

BbS
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Table 9
The accuracy on the eight test data sets by C'ascaded
networks of Qian & Sejnowski (1988)

Table 10
Accuracies of different algorithms for three states
(helix, sheet. coil) prediction

No. No.  Single network Cascaded network
Group sequence residue (%) - (%)
I 4 2417 619 625
2 15 2465 64-3 643
3 14 2550 62-5 63-2
4 14 2450 627 629
5 14 2492 633 643
6 14 2476 653 666
7 14 2507 26 629
8 14 2504 653 655
Total 113 19,861 635 64-0

some difference in prediction accuracy (049
between  their single network and our
EXPERT:NN, even though they were both trained
and tested on the same data sets. The reason was
that according to Qian & Sejnowski’s method, the
performance of their network on the test data set
was monitored during: training. The network
weights that performed the best on the test set were
saved and used. Whereas in our work, the
EXPERT-NN never saw the test data set during
training (see Methods and Materials).

The GOR III algorithm by Gibrat et al. (1987)
was reported to have achieved 639, prediction
accuracy by using correlations between certain pairs
of amino acids and secondary structures. Biou et al.
(1988) further improved the GOR 111 algorithm by
combining its result with that of two other algo-
rithms, the Homologue method and the bit pattern
method, achieving a reported accuracy of 6559,
(we refer to this combined algorithm as
GOR-Combined in the following discussion). We ran
the GOR-Combined program on protein sequences
in our database. Since their program contained the
statistics calculated using their database, i.e. their
training data, we divided our database into two
groups. Group A contained sequences that were
identical or more than 509, homologous to their
training data. Group B contained the rest of the
sequences. There were 64 sequences in group A and
49 sequences in group B. Apparently group B
should be used as the test data to compare the
GOR-Combined against other algorithms. hecause a
prediction algorithm could easily have a very high
prediction accuracy on protein sequences that are
either identical or highly homologous to its training
data, which cannot be used as an objective assess-
ment of the algorithm’s prediction accuracy. For
group B, the GOR-Combined was 62:4 9, accurate.
This is 3%, lower than their reported result. One

reason for this might be that GOR-combined algo- -

rithm used certain rules to combine the outputs of
different methods, and those rules did not work
quite as well for proteins not in its database. We
used the 64 protein sequences in group A to train
our hybrid system and applied it to the 49 protein
sequences in group B. It was 65:39%, accurate. This

Method Accuracy (%)
Lim (1974) 59

Chou & Fasman (1974) 50
Levin et al. (1986) 22
GOR 111 63

Qian & Sejnowski (1988) 643
Holley & Karplus (1989) 63-2
Hybrid 66-4

is about 19, lower than the average accuracy of the
hybrid system in the k-way cross-validation experi-
ment. We believe this was due to the smaller
training set used here. which had only 64 protein
sequences.

Table 10 lists the results of several other algo-
rithms. The results were obtained from each
author’s original report except those by Lim (1974)
and Chou & Fasman (1974), because in their original
reports they used the same data set for both
training and testing. Kabsch & Sander (1983b)
assessed the accuracies of these two algorithms with
separate test data, and the results were included in
the Table instead. Among these, our hybrid system
was tested with the largest set of protein data and it
gave the highest prediction accuracy.

4. Discussion -

The idea of combining the strength of different
methods is not entirely new in either machine
learning research (Wolpert, 1990) or protein
secondary structure prediction. For example, Biou
et al. (1988) used certain rules to combine three
methods. However, the authors did not explain how
their rules were generated in the first place. Thus it
is difficult for us to justify the use of those rules. In
our hybrid system, the Combiner learns how to
combine the outputs of different experts automati-
cally from the training data. A novel procedure has
to be developed to train the Combiner because
different experts can have very different behaviors.
For example, after training, some experts can be
1009/ correct on the training data set while others
may be only 709, correct on the training data. even
though they have very similar prediction accuracies
for proteins not in the training set. Our training
procedure for the Combiner can cope with experts
that have such different characteristics.

" This work showed that although different algo-
rithms may have very similar overall secondary
structure prediction accuracies, their detailed
predictions can be different. No single algorithm
always gives a better prediction than others.
A combination of them can produce a statistically
significant improvement over each individual
method. We developed a way to train a Combiner,
which learned to combine the outputs of different
experts automatically. A neural network was used
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as the Combiner in this work. But it is not the only
choice. A MBR system, for example. can also be
used as a Combiner. This paper is the first place
where the SM algorithm and the particular MBR
distance function have been introduced. Their accu-
racy were as good as or even better than any other
single algorithm reported to date for secondary
structure prediction. They deserve a more detailed
discussion, which is beyond the scope of this paper
and is done elsewhere (X. Zhang, unpublished
results). The techniques we used to control the
training of artificial neural networks were not only
objective but also effective. For a single one-hidden-
layer network, the accuracy was 63-19, with our
techniques (to control training purely based on the
training data). Whereas the other approach, to
monitor the performance of the network on the test
data during training, was 63-5%,. The difference
between them. was only 0-4%,. Thus our techniques
produced near-optimal training.

One of the reviewers of this paper raised the issue
of whether residues assigned to state G by the DSSP
program (Kabsch & Sander, 1983a) should be con-
sidered as in helix, especially when they are
adjacent to state H. In our original experiments, we
wanted to make our result directly comparable with
results obtained by other researchers, such as Qian
& Sejnowski (1988), since the main point of this
paper is that for the same secondary structure
assignment, the hybrid system gives better predic-
tion than other algorithms. Thus we used the same
assignment as Qian & Sejnowski (1988), i.e. only
considering H for « helix and E for § strand. After
we received the reviewer’s comments, we did the
following experiment: we assigned G states to be

_helix if they are adjacent to H, otherwise assigning
them to be coil. This way, among the 19,861
residues in our database, 162 residues (0-89, of the
total residues) were assigned differently, i.e. to helix
instead of coil. Then we compared the original
prediction of our hybrid system with this new
assignment. It is 66-1 9, accurate. This is very close
to the original accuracy of 66-49,. The change in
accuracy (0-39%,) is much smaller than the change in
the assignment (0:89%). This means that even
though the hybrid system was trained with a
different assignment, it can still predict correctly
most of the new assignment. This is in accordance
with observations by other researchers (e.g.

- Richardson & Richardson, 1988) that there are
certain ambiguities on secondary structure
boundaries assigned by DSSP.

" Good criteria for evaluating and comparing
different prediction algorithms are crucial for the
progress of this research field. In this work, we made
use of the significance interval measure from statis-
tics, which could tell us whether the differences
observed are significant or not, and what factors can
influence that. We emphasize the importance of the
fact that in our tests, the hybrid system never
looked at the test data during training, thus making
the performance of the system on the test data as
objective as possible. The k-way cross-validation

allowed us to test our hybrid system with as many
data as we have, and yet still avoided overlapping
between the test data and training data. Some
researchers have used one protein in each test
group, thus maximizing the training data size.
However. the extremely large amount of compu-
tation in our work prevented us from doing that (i.e.
k=113, the total number of protein sequences of
our database). We choose k =8. which did not
reduce the size of each training data set very much,
and yet cut the amount of computation dramati-
cally. Even so, a large amount of computation was
still needed to carry out our experiment. This
involved (1) computing many statistics for SM and
distance matrices for MBR; (2) pattern matching
and sorting through the whole database to find
neighbors in MBR; and (3) training many neural
networks with large numbers of inputfoutput
examples. The experiment was done on a massively
parallel computer Connection Machine CM-2. The
particular machine we used had 4096 processors. In
general, CM-2 can have up to 65,5636 processors.

There are many important issues in protein
secondary structure prediction, such as: (1) is “the
percentage of correctly predicted residues’ the best
measure for success? (2) What is the best way to
assign the secondary structures to a protein once
its three-dimensional co-ordinates are known?
(3) What is the right criteria for homology in
selecting test/training data? A comprehensive
discussion of these issues is beyond the scope of this
paper. The emphasis here is to demonstrate that our
hybrid system gives significantly better perform-
ance than individual algorithms and all previous
methods, using the same criteria in selecting data
and the same accuracy measure as used by other
researchers.

We are grateful to Eric Lander and Tau-Mu Yi for
valuable comments and suggestions on several drafts of

- this paper. We thank Christian Sander for providing us

with the DSSP program and Anand V. Bodapati for
helpful - discussions. . We also thank the anonymous
reviewers who gave us insightful comments.
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